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Abstract. Grünbaum’s inequality gives sharp bounds between the volume of

a convex body and its part cut off by a hyperplane through the centroid of

the body. We provide a generalization of this inequality for hyperplanes that
do not necessarily contain the centroid. As an application, we obtain a sharp

inequality that compares sections of a convex body to the maximal section

parallel to it.

1. Introduction

A convex body K is a compact convex subset of Rn with non-empty interior. As
usual, we write ⟨·, ·⟩ for the Euclidean inner product. We also denote by Sn−1 the
unit sphere in Rn. The centroid (also called the center of mass, or barycenter) of
K is the point

g(K) =
1

|K|

∫
K

x dx.

Here and throughout the paper, |A|k denotes the k-dimensional Lebesgue measure
(volume) of a k-dimensional measurable set A. If the dimension of the set is un-
derstood, then we will omit the subscript. An inequality of Grünbaum [5] states if
K ⊂ Rn is a convex body with centroid at the origin then(

n

n+ 1

)n

≤ |K ∩ ξ+|
|K|

≤ 1−
(

n

n+ 1

)n

, for all ξ ∈ Sn−1. (1)

Here ξ+ = {x ∈ Rn : ⟨x, ξ⟩ ≥ 0}. The bounds in (1) are sharp and equality occurs
in the lower bound when, for example, K is the cone

K = conv

(
−1

n+ 1
ξ +Bn−1

2 ,
n

n+ 1
ξ

)
. (2)

Similarly, equality occurs in the upper bound when, for example, K is the cone

K = conv

(
n

n+ 1
ξ +Bn−1

2 ,
1

n+ 1
ξ

)
,

where we denote by Bn−1
2 the closed unit (n − 1)-dimensional Euclidean ball in

ξ⊥ = {x ∈ Rn : ⟨x, ξ⟩ = 0}. In this paper, all sets will be closed. For recent
advancements in Grünbaum-type inequalities for sections and projections of convex
bodies see [3], [8], [9], [12].
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In light of (1), the goal of this paper is to establish a similar result with hyper-
planes that do not necessarily contain the centroid. We ask the following question:
Are there positive constants C1 and C2 such that

C1 ≤ |K ∩H+
α |

|K|
≤ C2, (3)

for every convex body with centroid at the origin, α ∈ (−1, n), and ξ ∈ Sn−1? Here
H+

α is the halfspace

H+
α = {x ∈ Rn : ⟨x, ξ⟩ ≥ αhK(−ξ)},

and hK is the support function for K (see Section 2 for the precise definition). We
give an affirmative answer to this question. The two constants C1 and C2 depend
only on α and n, i.e., C1 = C1(α, n), C2 = C2(α, n). Both bounds are sharp,
and the exact values of C1(α, n) and C2(α, n) are presented in Theorem 4, which
also discusses the equality cases. The case n = 2 for (3) was obtained earlier in
[11], where it was used to prove a discrete version of Grünbaum’s inequality. It
is important to note that in (1), one bound automatically determines the other
bound. On the other hand, the bounds in (3) need to be shown separately.

As an application of (3) we obtain a generalization of the following result of
Makai and Martini [7]; see also [2]. Let K ⊂ Rn be a convex body with centroid at
the origin, then∣∣K ∩ ξ⊥

∣∣ ≥ (
n

n+ 1

)n−1

max
t∈R

∣∣∣K ∩
(
ξ⊥ + tξ

) ∣∣∣, for all ξ ∈ Sn−1. (4)

The bound is sharp, and equality holds again if K is a cone as in (2). In this
paper, we establish an analogue of the inequality above for sections that do not
necessarily pass through the centroid. Let K ⊂ Rn be a convex body with centroid
at the origin, α ∈ (−1, n), and ξ ∈ Sn−1. Consider the hyperplane

Hα = {x ∈ Rn : ⟨x, ξ⟩ = αhK(−ξ)}.

Then

|K ∩Hα| ≥ Dmax
t∈R

∣∣∣K ∩
(
ξ⊥ + tξ

) ∣∣∣,
where D = D(α, n) is a constant depending on only α and n. The inequality is
sharp, and the exact value of D(α, n) is discussed in Theorem 5, along with equality
cases.

2. Preliminaries

The support function hK : Rn −→ R for a convex body K ⊂ Rn is

hK(ξ) = max{⟨x, ξ⟩ : x ∈ K}.

If ξ ∈ Sn−1 then hK(ξ) gives the signed distance from the origin to the supporting
hyperplane for K in the direction ξ. A result of Minkowski and Randon [1, p. 58]
states if K ⊂ Rn is a convex body with centroid at the origin and ξ ∈ Sn−1, then

1

n
hK(ξ) ≤ hK(−ξ) ≤ nhK(ξ). (5)

Note that the choice of bounds for α in Theorems 4 and 5 is a result of (5).
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Let ξ ∈ Sn−1. The parallel section function AK,ξ : R −→ R for a convex body
K is

AK,ξ(t) =
∣∣K ∩

(
ξ⊥ + tξ

)∣∣ .
Lemma 1. Let K ⊂ Rn be a convex body. Then A

1/(n−1)
K,ξ is concave on its support,

for every ξ ∈ Sn−1.

For the proof of Lemma 1, refer to [6, p. 18].
Let ξ ∈ Sn−1. The volume cut-off function VK,ξ : R −→ R for a convex body

K ⊂ Rn is

VK,ξ(t) =

∫ ∞

t

AK,ξ(s) ds.

The following result is also well-known, but we include a proof for completeness.

Lemma 2. Let K ⊂ Rn be a convex body. Then V
1/n
K,ξ is concave on its support,

for every ξ ∈ Sn−1.

Proof. Let λ ∈ [0, 1] and t1, t2 ∈ supp(VK,ξ). Note that

λ
(
K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ t1}

)
+ (1− λ)

(
K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ t2}

)
⊂

(
K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ λt1 + (1− λ)t2}

)
.

This, together with the Brunn-Minkowski inequality, implies that∣∣∣K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ λt1 + (1− λ)t2}
∣∣∣1/n

≥
∣∣∣λ(K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ t1}

)
+ (1− λ)

(
K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ t2}

)∣∣∣1/n
≥ λ

∣∣∣K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ t1}
∣∣∣1/n + (1− λ)

∣∣∣K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ t2}
∣∣∣1/n,

which proves the result. □

Let K ⊂ Rn be a convex body and ξ ∈ Sn−1. The Schwarz symmetral of K
with respect to ξ is the convex body SξK such that for all t ∈ [−hK (−ξ) , hK (ξ)],
the set SξK ∩

(
ξ⊥ + tξ

)
is an (n−1)-dimensional Euclidean ball centered at tξ and

AK,ξ(t) = A(SξK),ξ(t). By construction we obtain

hK(±ξ) = hSξK(±ξ) and VK,ξ(t) = V(SξK),ξ(t), (6)

for all t ∈ R. Note that the centroid of SξK lies on ℓ = {tξ : t ∈ R} due to the
rotational symmetry of SξK about ℓ. See [4, p. 62] for more information on Schwarz
symmetrizations.

3. Main Results

Before proving our main result, we will provide a simple Remark that we will
apply throughout the rest of the paper.

Remark 3. Let K ⊂ Rn be a convex body with centroid at the origin. Let
α ∈ (−1, n) and ξ ∈ Sn−1. Denote K = K + hK(−ξ)ξ and consider the two
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halfspaces H+
α = {x ∈ Rn : ⟨x, ξ⟩ ≥ αhK(−ξ)} and H+

α = {x ∈ Rn : ⟨x, ξ⟩ ≥
(α+ 1)

〈
g(K), ξ

〉
}. Then ∣∣K ∩H+

α

∣∣ = ∣∣K ∩H+
α

∣∣ .
Proof.

g(K) =
1∣∣K∣∣

∫
K

x dx =
1

|K|

∫
K+hK(−ξ)ξ

x dx

=
1

|K|

∫
K

x+ hK(−ξ)ξ dx = hK(−ξ)ξ,

and the result follows. □

Analogous statements to Remark 3 also hold when ≥ is replaced with ≤ or =.
We will now prove our main result.

Theorem 4. Let K ⊂ Rn be a convex body with centroid at the origin. Let α ∈
(−1, n) and ξ ∈ Sn−1. Consider the halfspace

H+
α = {x ∈ Rn : ⟨x, ξ⟩ ≥ αhK(−ξ)}.

Then

C1(α, n) ≤
|K ∩H+

α |
|K|

≤ C2(α, n).

where

C1(α, n) =


(

n−α
n+1

)n

α ∈ (−1, 0],(
n

n+1

)n

(α+ 1)n−1(1− αn) α ∈ (0, 1/n),

0 α ∈ [1/n, n),

and

C2(α, n) =

{
1−

(
n(α+1)
n+1

)n

α ∈ (−1, 0],

c(α, n) α ∈ (0, n).

c(α, n) is a constant depending on only α and n. Determining the explicit value
of c(α, n) involves finding the roots of a high-degree rational function. The lower
bounds and upper bounds are sharp, and equality cases are discussed in the proof
below.

Proof. Given K as written above, consider the Schwarz symmetral SξK. Using the
observations in (6) and Fubini’s theorem we can conclude that the centroid of SξK
is at the origin and that |K∩H+

α | = |(SξK)∩H+
α | for all α ∈ (−1, n). Therefore we

will prove the result with SξK, which we will denote by K for brevity. By Remark

3, it suffices to find bounds for |K ∩H+
α |, and after further abuse of notation, we

will write K for K and H+
α for H+

α . We will also write Hα = {x ∈ Rn : ⟨x, ξ⟩ =
(α + 1) ⟨g(K), ξ⟩} and H−

α = {x ∈ Rn : ⟨x, ξ⟩ ≤ (α + 1) ⟨g(K), ξ⟩}. Let us remark
that ξ⊥ is now a supporting hyperplane of K and 0 ∈ ∂K.

Let us first consider the case α ∈ (−1, 0]. We will obtain the upper bound.
Observe that ∣∣K ∩H−

α

∣∣ = |K| −
∣∣K ∩H+

α

∣∣ .
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Denote by K/(α+1) the dilation of K by a factor of 1/(α+1) > 1, and also write
H−

α /(α+1) = {x ∈ Rn : ⟨x, ξ⟩ ≤ ⟨g(K), ξ⟩}. Since 0 ∈ K, we obtain K ⊂ K/(α+1)
and thus∣∣K ∩H−

α

∣∣ = (α+ 1)n
∣∣∣∣ 1

α+ 1
K ∩ 1

α+ 1
H−

α

∣∣∣∣
≥ (α+ 1)n

∣∣∣K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≤ ⟨g(K), ξ⟩}
∣∣∣

= (α+ 1)n
∣∣∣(K − g(K)

)
∩ {x ∈ Rn : ⟨x, ξ⟩ ≤ 0}

∣∣∣ ≥ (α+ 1)n
(

n

n+ 1

)n

|K| ,

where we used Grünbaum’s inequality (1). Therefore, for α ∈ (−1, 0] :

|K ∩H+
α |

|K|
≤ 1−

(
n(α+ 1)

n+ 1

)n

,

as desired.
We will now obtain the lower bound for α ∈ (−1, 0]. By Lemma 2, V

1/n
K,ξ is

concave on its support. Hence,∣∣K ∩H+
α

∣∣1/n = VK,ξ
1/n

(
(α+ 1) ⟨g(K), ξ⟩

)
= VK,ξ

1/n
(
− α · 0 + (α+ 1) ⟨g(K), ξ⟩

)
≥ −αVK,ξ

1/n(0) + (α+ 1)VK,ξ
1/n

(
⟨g(K), ξ⟩

)
.

Using Grünbaum’s inequality and the observation that VK,ξ(0) = |K|, we have∣∣K ∩H+
α

∣∣1/n ≥ −α |K|1/n + (α+ 1)

(
n

n+ 1

)
|K|1/n ,

which implies for α ∈ (−1, 0] :(
n− α

n+ 1

)n

≤ |K ∩H+
α |

|K|
.

Thus, we have shown the bounds for α ∈ (−1, 0].
We will now investigate the case α ∈ (0, n). We prove the upper bound first.

Let Bn−1
2 be the unit (n − 1)-dimensional Euclidean ball in ξ⊥. By continuity we

can find r1 ≥ 0 such that

K ∩ ξ⊥ ⊂ r1B
n−1
2 and

∣∣conv(r1Bn−1
2 ,K ∩Hα)

∣∣ = ∣∣K ∩H−
α

∣∣ .
Denote L− = conv(r1B

n−1
2 ,K ∩Hα). Then again by continuity, there are r2 ≥ 0

and µ with (α+ 1) ⟨g(K), ξ⟩ < µ < hK(ξ) such that∣∣conv(K ∩Hα, r2B
n−1
2 + µξ)

∣∣ = ∣∣K ∩H+
α

∣∣
and

L− ∪ conv(K ∩Hα, r2B
n−1
2 + µξ) = conv(r1B

n−1
2 , r2B

n−1
2 + µξ).

Denote L+ = conv(K∩Hα, r2B
n−1
2 +µξ). Then L = L−∪L+ is a convex body whose

sections parallel to ξ⊥ are Euclidean balls; see Figure 1. Note that ⟨g(L−), ξ⟩ ≤
⟨g(K ∩H−

α ), ξ⟩ and ⟨g(L+), ξ⟩ ≤ ⟨g(K ∩H+
α ), ξ⟩, and thus

⟨g(L), ξ⟩ ≤ ⟨g(K), ξ⟩ .
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Figure 1. Constructing r1B
n−1
2 and r2B

n−1
2 + µξ.

By construction, we have |K| = |L| and

|K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ (α+ 1)⟨g(K), ξ⟩}|
= |L ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ (α+ 1)⟨g(K), ξ⟩}|
≤ |L ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ (α+ 1)⟨g(L), ξ⟩}| .

Hence, it suffices to find an upper estimate for L instead of K. After rescaling, we
may assume that hL(ξ) = 1 and then for 0 ≤ t ≤ 1 we can assume that

AL,ξ(t) = (mt+ b)n−1, (7)

where either m = 0 and b > 0, or b ≥ 0 and either (1) m > 0 or (2) m < 0 and
m+ b ≥ 0. We will focus on the case m ̸= 0 first, and address the case m = 0 later.
Then by Fubini’s theorem and (7) we obtain

|L| =
∫ 1

0

AL,ξ(t) dt =
(b+m)n − bn

mn
.

and similarly we find

⟨g(L), ξ⟩ = 1

|L|

∫ 1

0

tAL,ξ(t) dt =
bn+1 + (mn− b)(b+m)n

m(n+ 1)
(
(b+m)n − bn

) .
Denote fL = (α+ 1) ⟨g(L), ξ⟩. Now we can compute

|L ∩H+
α |

|L|
=

1

|L|

∫ 1

fL

AL,ξ(t) dt =
(b+m)n − (b+mfL)

n

(b+m)n − bn
.

Denote by φ the above equation of m and b for when m ̸= 0. If b > 0 then we have

φ(m, b)
m→0−−−−→ (1 − α)/2, which is readily verified to agree with the case m = 0.

Making the change of variables z = b/m allows us to write φ as a function of z.
That is, we obtain

φ(z) =
(z + 1)n − (z + fL)

n

(z + 1)n − zn
,

where

fL = (α+ 1)
zn+1 + (n− z)(z + 1)n

(n+ 1)
(
(z + 1)n − zn

) ,
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for z ∈ (−∞,−1] ∪ [0,∞). For α ∈ (0, n), it isn’t immediately clear whether φ has
nice properties, so determining c(α, n) becomes an unfeasible task, as solving for
c(α, n) involves solving for roots of high-degree rational functions. When n = 2 one
can explicitly solve for c(α, n) (see [11] for the derivation):

c(α, 2) =

{
5−3α
9(α+1) α ∈ (0, 1),
1
9 (2− α)2 α ∈ [1, 2).

Thus, for α ∈ (0, n) we obtain

|K ∩H+
α |

|K|
≤ C2(α, n) = sup

z∈(−∞,−1]∪[0,∞)

φ(z),

as desired.
We will now obtain the lower bound for α ∈ (0, n). Note for α ∈ [1/n, n) if K is

the cone

K = conv

(
−n
n+ 1

ξ +Bn−1
2 ,

1

n+ 1
ξ

)
,

then |K ∩H+
α | = 0. Therefore we can not do better than C1(α, n) = 0.

Now assume that α ∈ (0, 1/n). By continuity, there is v ≥ hK(ξ) such that∣∣conv(K ∩Hα, vξ)
∣∣ = ∣∣K ∩H+

α

∣∣ .
Denote M+ = conv(K ∩Hα, vξ). Then again by continuity there are r and β with
r > 0 and 0 < β < (α+ 1) ⟨g(K), ξ⟩ such that

conv(rBn−1
2 + βξ,M+) = conv(rBn−1

2 + βξ, vξ),

and ∣∣conv(0, rBn−1
2 + βξ,K ∩Hα)

∣∣ = ∣∣K ∩H−
α

∣∣ .
Denote M− = conv(0, rBn−1

2 + βξ,K ∩ Hα). Then M = M− ∪M+ is a convex
body formed by the union of two cones with a common base in ξ⊥ + βξ, whose
sections parallel to ξ⊥ are Euclidean balls; see Figure 2.

Figure 2. Constructing rBn−1
2 + βξ and vξ.
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Note that ⟨g(M−), ξ⟩ ≥ ⟨g(K ∩H−
α ), ξ⟩ and ⟨g(M+), ξ⟩ ≥ ⟨g(K ∩H+

α ), ξ⟩, and
thus

⟨g(M), ξ⟩ ≥ ⟨g(K), ξ⟩ .

As a result we have constructed a convex body M where |K| = |M | and

|K ∩ {x ∈ Rn : x1 ≥ (α+ 1)⟨g(K), ξ⟩}|
= |M ∩ {x ∈ Rn : x1 ≥ (α+ 1)⟨g(K), ξ⟩}|
≥ |M ∩ {x ∈ Rn : x1 ≥ (α+ 1)⟨g(M), ξ⟩}| .

Hence, it suffices to work with M instead of K. Up to rescaling, we may assume
that hM (ξ) = 1 and

∣∣rBn−1
2

∣∣ = n. Define

M1 =M ∩ {x ∈ Rn | ⟨x, ξ⟩ ≤ β} and M2 =M ∩ {x ∈ Rn | ⟨x, ξ⟩ ≥ β},

to be the cones forming M . Since hM1(ξ) = β and
∣∣rBn−1

2

∣∣ = n, an application of
Fubini’s theorem yields |M1| = β and |M2| = 1 − β. It is a well-known fact that
the centroid of a cone in Rn divides its height in the ratio [1 : n]. Hence, we obtain
⟨g(M1), ξ⟩ = (βn)/(n + 1) and ⟨g(M2), ξ⟩ = (βn + 1)/(n + 1), and thus it follows
that

⟨g(M), ξ⟩ = |M1| ⟨g(M1), ξ⟩+ |M2| ⟨g(M2), ξ⟩

= β
βn

n+ 1
+ (1− β)

βn+ 1

n+ 1
=
β(n− 1) + 1

n+ 1
.

Denote fM = (α + 1)⟨g(M), ξ⟩. We are interested in computing the volume of
the intersection of M with the halfspace H+

α = {x ∈ Rn : ⟨x, ξ⟩ ≥ fM}. We will
consider two cases, first when 0 < β ≤ fM , and then when fM ≤ β < 1. These
cases are equivalent to 0 < β ≤ −α−1

(n−1)α−2 and −α−1
(n−1)α−2 ≤ β < 1, respectively. In

the first case, note that M ∩H+
α is a cone homothetic to M2 with the homothety

coefficient equal to (1− fM )/(1− β). Therefore,∣∣M ∩H+
α

∣∣ = (
1− fM
1− β

)n

(1− β) =
(1− fM )n

(1− β)n−1
.

In the second case, M ∩ H−
α is a cone homothetic to M1 with the homothety

coefficient equal to fM/β. Thus,∣∣M ∩H+
α

∣∣ = 1−
∣∣M ∩H−

α

∣∣ = 1−
(
fM
β

)n

β = 1− fnM
βn−1

.

Summarizing, |M ∩H+
α | is equal to the following piecewise function

ψ(β) =

{
(1−fM )n

(1−β)n−1 , 0 < β ≤ −α−1
(n−1)α−2 ,

1− fn
M

βn−1 ,
−α−1

(n−1)α−2 ≤ β < 1.

Denote by ψ the above function of β. Our goal is to find the minimum of ψ on
(0, 1) when α ∈ (0, 1/n). Calculations show that the derivative of ψ vanishes at
β0 =

(
(n + 1)α

)
/(α + 1) ∈ (0, −α−1

(n−1)α−2 ). Furthermore, ψ is decreasing on (0, β0)

and increasing on (β0, 1). Thus, the minimum of ψ is

ψ(β0) =

(
n

n+ 1

)n

(α+ 1)n−1(1− αn).
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We will now discuss the equality cases. Recall that in both the upper bound
construction and lower bound construction, we performed operations such as the
Schwarz symmetrization to transform the sections of K in the direction of ξ into
(n− 1)-dimensional Euclidean balls. We also performed scalings and translations.
If we have an equality body K for either bound under these operations, then we
can undo these operations to produce a new body whose sections are no longer
(n− 1)-dimensional Euclidean balls but instead (n− 1)-dimensional convex bodies
homothetic to each other.

We will start classifying equality cases for the upper bound. Recall in the upper
bound construction, the extremal body L is, up to translation, the convex hull of
an (n−1)-dimensional convex body B lying parallel to ξ⊥ in ξ+, and a homothetic
copy of B lying in ξ− = {x ∈ Rn : ⟨x, ξ⟩ ≤ 0}. For α ∈ (−1, 0], we have equality
from the equality conditions of Grünbaum’s theorem, in other words L = conv(B, v)
is a cone with its base B being an (n − 1)-dimensional convex body lying parallel
to ξ⊥ in ξ+ and vertex v lying in ξ−. For α ∈ (0, n), L is still the convex hull of
a (n− 1)-dimensional convex body B and a homothetic copy of B, but there is no
information on an explicit maximum, so we can not determine all equality cases.

We will now classify equality cases for the lower bound. Recall in the lower bound
construction, the extremal body M is, up to translation, the union of two cones
which share the same base B. For α ∈ (−1, 0], we have equality in the limit from
the equality conditions of Grünbaum’s theorem, in other words M = conv(B, v) is
a cone with its base B being an (n− 1)-dimensional convex body lying parallel to
ξ⊥ in ξ− and vertex v lying in ξ+. For α ∈ (0, 1/n), recall that we have a minimum
for ψ at β0. As α increases from 0 towards 1/n, β0 increases from 0 to 1, so B
shifts in the direction of ξ. When α ∈ [1/n, n) we have equality in the limiting case
for α ∈ (0, 1/n), α −→ 1/n; see Figure 3. □

Figure 3. Extremizing shapes for the lower bound.

As an application of Theorem 4 we obtain a generalization of the result of Makai
and Martini [7] stated in the introduction.

Theorem 5. Let K be a convex body with centroid at the origin. Let ξ ∈ Sn−1 and
α ∈ (−1, n). Consider the hyperplane

Hα = {x ∈ Rn : ⟨x, ξ⟩ = αhK(−ξ)}.
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Then

|K ∩Hα| ≥ D(α, n) sup
t∈R

∣∣K ∩
(
ξ⊥ + tξ

)∣∣ ,
where

D(α, n) =


(

n(α+1)
n+1

)n−1

α ∈ (−1, 0],(
n−α
n+1

)n−1

α ∈ (0, 1/n],

0 α ∈ (1/n, n).

The bound is sharp and equality cases are discussed in the proof below.

Proof. Note for α ∈ (1/n, n), if K is the cone

K = conv

(
−n
n+ 1

ξ +Bn−1
2 ,

1

n+ 1
ξ

)
,

then it follows that |K ∩Hα| = 0. Therefore for such α we cannot do better than
D(α, n) = 0.

We will now consider α ∈ (−1, 0]. We can assume that

|K ∩Hα| < sup
t∈R

∣∣K ∩
(
ξ⊥ + tξ

)∣∣ ,
otherwise, the theorem follows immediately.

We will apply the Schwarz symmetrization SξK to K. Abusing notation, we will
denote the new body again by K. We will write

t0 = min{t ∈ R : AK,ξ(t) = max
t∈R

AK,ξ(t)},

so that K ∩ (ξ⊥ + t0ξ) is a section of K orthogonal to ξ of maximal volume.
Since 0 < |K ∩Hα| <

∣∣K ∩
(
ξ⊥ + t0ξ

)∣∣ we can find a cone with base equal to

K∩
(
ξ⊥+ t0ξ

)
and section equal to K∩Hα. Such a cone is uniquely determined by

these two sections. Denote this cone by N1. Let γξ be the vertex of N1, for some
number γ (either positive or negative). Due to the convexity of K, γξ lies outside of
K. Define N2 to be the cone with base equal to K∩Hα and vertex γξ; see Figure 4.
Finally, we will letH∗

α be the halfspace bounded by the hyperplaneHα that contains
N2. We will consider two cases: H∗

α = H+
α = {x ∈ Rn : ⟨x, ξ⟩ ≥ αhK(−ξ)} and

Figure 4. Constructing N1 and N2.

H∗
α = H−

α = {x ∈ Rn : ⟨x, ξ⟩ ≤ αhK(−ξ)}. Denote h = αhK(−ξ). WhenH∗
α = H+

α

the following inequality holds:

|K ∩Hα| =
|N2|n
|γ − h|

≥ |K ∩H+
α |n

|γ − h|
.
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Then by Theorem 4 and using that |K| = |K ∩H+
α |+ |K ∩H−

α | ≥ C1(α, n) |K|+
|K ∩H−

α | we note that
(
1− C1(α, n)

)
|K| ≥ |K ∩H−

α |. We arrive at the following
estimates

|K ∩Hα| ≥
|K ∩H+

α |n
|γ − h|

≥ C1(α, n)
|K|n
|γ − h|

≥ C1(α, n)

1− C1(α, n)

|K ∩H−
α |n

|γ − h|
≥ C1(α, n)

1− C1(α, n)

|N1 \N2|n
|γ − h|

.

Expressing the volumes of N1 and N2 in terms of their bases, we see

|K ∩Hα| ≥
C1(α, n)

1− C1(α, n)

(|N1| − |N2|)n
|γ − h|

=
C1(α, n)

1− C1(α, n)

∣∣K ∩
(
ξ⊥ + t0ξ

)∣∣ |γ − t0|
|γ − h|

− C1(α, n)

1− C1(α, n)
|K ∩Hα| .

And so,

|K ∩Hα| ≥
C1(α,n)

1−C1(α,n)

1 + C1(α,n)
1−C1(α,n)

|K ∩ (ξ⊥ + t0ξ)||γ − t0|
|γ − h|

= C1(α, n)
|K ∩ (ξ⊥ + t0ξ)||γ − t0|

|γ − h|
.

Because N1 is a homothetic copy of N2, we can write

|γ − t0|
|γ − h|

=

∣∣K ∩
(
ξ⊥ + t0ξ

)∣∣1/(n−1)

|K ∩Hα|1/(n−1)
.

Thus,

|K ∩Hα| ≥ C1(α, n)
∣∣K ∩

(
ξ⊥ + t0ξ

)∣∣ ∣∣K ∩
(
ξ⊥ + t0ξ

)∣∣1/(n−1)

|K ∩Hα|1/(n−1)
,

which implies

|K ∩Hα| ≥ C1(α, n)
n−1
n

∣∣K ∩
(
ξ⊥ + t0ξ

)∣∣ . (8)

Now suppose H∗
α = H−

α . Then the following inequality holds

|K ∩Hα| =
|N2|n
|γ − h|

≥ |K ∩H−
α |n

|γ − h|
.

By Theorem 4 we have
(
(1−C2(α, n)

)
|K| ≤ |K∩H−

α | and so the following inequal-
ities hold

|K ∩Hα| ≥
|K ∩H−

α |n
|γ − h|

≥
(
1− C2(α, n)

) |K|n
|γ − h|

≥ 1− C2(α, n)

C2(α, n)

|K ∩H+
α |n

|γ − h|
≥ 1− C2(α, n)

C2(α, n)

|N1 \N2|n
|γ − h|

.

Expressing the volumes of N1 and N2 in terms of their bases, we get

|K ∩Hα| ≥
1− C2(α, n)

C2(α, n)

(|N1| − |N2|)n
|γ − h|

=
1− C2(α, n)

C2(α, n)

∣∣K ∩
(
ξ⊥ + t0ξ

)∣∣ |γ − t0|
|γ − h|

− 1− C2(α, n)

C2(α, n)
|K ∩Hα| .
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So,

|K ∩Hα| ≥
1−C2(α,n)
C2(α,n)

1 + 1−C2(α,n)
C2(α,n)

|K ∩ (ξ⊥ + t0ξ)||γ − t0|
|γ − h|

= (1− C2(α, n))
|K ∩ (ξ⊥ + t0ξ)||γ − t0|

|γ − h|
.

Again using the homothety of N1 and N2, we arrive at

|K ∩Hα| ≥
(
1− C2(α, n)

) ∣∣K ∩
(
ξ⊥ + t0ξ

)∣∣ ∣∣K ∩
(
ξ⊥ + t0ξ

)∣∣1/(n−1)

|K ∩Hα|1/(n−1)
,

which implies

|K ∩Hα| ≥
(
1− C2(α, n)

)n−1
n

∣∣K ∩
(
ξ⊥ + t0ξ

)∣∣ . (9)

Now to determine D(α, n) we need to find the minimum of the two constants
in equations (8) and (9) for fixed α. Note that nα ≤ −α for α ∈ (−1, 0]. Then it
follows that(

1− C2(α, n)
)n−1

n =

(
n(α+ 1)

n+ 1

)n−1

≤
(
n− α

n+ 1

)n−1

= C1(α, n)
n−1
n ,

for all α ∈ (−1, 0], and thus we have our desired constant.
We will now consider α ∈ (0, 1/n]. We claim that the extremizing bodies are the

same extremizing bodies in Theorem 4. Our plan of attack to prove this claim is
to show that when we construct the bodies from Theorem 4, we can only decrease
|K ∩Hα| and only increase the volume of the maximal section of K. We may prove
this for the Schwarz symmetrization SξK of K, which after abuse of notation we

will denote by K. We will also employ Remark 3 and prove the result for K and
Hα = {x ∈ Rn : ⟨x, ξ⟩ = (α+ 1)

〈
g(K), ξ

〉
}. Again after abuse of notation, we will

write K for K and Hα for Hα. We will write

t0 = min{t ∈ R : AK,ξ(t) = max
t∈R

AK,ξ(t)},

so that K ∩ (ξ⊥ + t0ξ) is a section of K orthogonal to ξ of maximal volume. We
will split the analysis into two parts, first for when (α+ 1) ⟨g(K), ξ⟩ < t0 < hK(ξ),
and then for when 0 < t0 < (α + 1) ⟨g(K), ξ⟩. The case t0 = (α + 1) ⟨g(K), ξ⟩ is
trivial.

Suppose that (α + 1) ⟨g(K), ξ⟩ < t0 < hK(ξ). Then following the upper bound
construction in Theorem 4, we can construct a convex body

L = conv(r1B
n−1
2 , r2B

n−1
2 + µξ),

for some r1 ≥ 0 and r2 ≥ 0 such that r1+r2 > 0, and µ such that (α+1) ⟨g(K), ξ⟩ <
µ < hK(ξ), whose sections orthogonal to ξ are Euclidean balls. Write

rK,ξ(t) = A
1/(n−1)
K,ξ (t) and rL,ξ(t) = A

1/(n−1)
L,ξ (t).

Lemma 1 tells us that rK,ξ and rL,ξ are concave on their support, and rL,ξ is affine
on its support. In fact we can write (up to a constant depending only on n):

rL,ξ(t) =
r2 − r1
µ

t+ r1.
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Since we are assuming (α+ 1) ⟨g(K), ξ⟩ < t0 < hK(ξ), it follows that r2 ≥ r1, and
thus AL,ξ attains its maximum at µ. Since r2 ≥ r1 we get

r2 − r1
µ

≥ 0,

and so this, together with the fact from Theorem 4 that ⟨g(L), ξ⟩ ≤ ⟨g(K), ξ⟩,
implies

|L ∩ {x ∈ Rn : ⟨x, ξ⟩ = (α+ 1) ⟨g(L), ξ⟩}|
≤ |K ∩ {x ∈ Rn : ⟨x, ξ⟩ = (α+ 1) ⟨g(K), ξ⟩}| .

We now want to show that the volume of the maximal section of L is no smaller
than the volume of the maximal section of K. Suppose the opposite, that is

AK,ξ(t0) > AL,ξ(µ).

Then it follows by the construction of L and concavity of rK,ξ on its support that
µ ≤ t0. Raising both sides to the power 1/(n− 1), we see

rK,ξ(t0) > rL,ξ(µ) = r2.

Denote fK = (α+1) ⟨g(K), ξ⟩. Recall by the construction of L we have rK,ξ(fK) =
rL,ξ(fK), and thus we can compute

|L ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ fK}| =
∫ µ

fK

(
r2 − r1
µ

t+ r1

)n−1

dt

=

∫ µ

fK

(
r2 − rK,ξ(fK)

µ− fK
(t− fK) + rK,ξ(fK)

)n−1

dt =
rn2 − rnK,ξ(fK)

r2 − rK,ξ(fK)

µ− fK
n

≤
rn2 − rnK,ξ(fK)

r2 − rK,ξ(fK)

t0 − fK
n

=

∫ t0

fK

(
r2 − rK,ξ(fK)

t0 − fK
(t− fK) + rK,ξ(fK)

)n−1

dt,

where we used µ ≤ t0 for the above inequality. Denote

ζ(t) =

(
r2 − rK,ξ(fK)

t0 − fK
(t− fK) + rK,ξ(fK)

)
.

Note that ζ(fK) = rK,ξ(fK). Since by assumption r2 < rK,ξ(t0), it follows from
concavity that ζ(t) < rK,ξ(t) for all t ∈ (fK , t0], and thus we have∫ t0

fK

ζn−1(t) dt <

∫ t0

fK

AK,ξ(t) dt = |K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ fK}| .

Combining all of the above inequalities, we obtain

|L ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ fK}| < |K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≥ fK}| ,

a contradiction to our construction in Theorem 4. Therefore, we must have

AK,ξ

(
t0) ≤ AL,ξ

(
µ),

as desired.
Without loss of generality, we may assume that µ = 1. Then for 0 ≤ t ≤ 1 we

can write

AL,ξ(t) =
(
(r2 − r1)t+ r1

)n−1
(10)
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where r2 > 0 and r1 ≥ 0. Moreover, we may assume r2 > r1, otherwise there is
nothing to prove. Then by Fubini’s theorem and (10) we obtain

|L| =
∫ 1

0

AL,ξ(t) dt =
rn2 − rn1

(r2 − r1)n
.

and similarly we find

⟨g(L), ξ⟩ = 1

|L|

∫ 1

0

tAL,ξ(t) dt =
rn+1
1 +

(
(r2 − r1)n− r1

)
rn2

(r2 − r1)(n+ 1)(rn2 − rn1 )
.

Denote fL = (α+ 1) ⟨g(L), ξ⟩. We are interested in minimizing

φ(r1, r2) =

(
(r2 − r1)fL + r1

r2

)n−1

=
AL,ξ(fL)

AL,ξ(1)
.

As in Theorem 4, we may write z = r1/(r2 − r1) so that φ can be written as a
function of z:

φ(z) =

(
z + fL
z + 1

)n−1

,

where

fL = (α+ 1)
zn+1 + (n− z)(z + 1)n

(n+ 1)
(
(z + 1)n − zn

) ,
for z ∈ [0,∞). As in Theorem 4, computing the minimum of φ is difficult, but we
will work around this fact. For now, it is enough to note that AL,ξ(t) is increasing
in t on its support, so it follows that AL,ξ(⟨g(L), ξ⟩) ≤ AL,ξ(fL). And hence we
obtain for α ∈ (0, 1/n] the following inequalities(

n

n+ 1

)n−1

≤ AL,ξ(⟨g(L), ξ⟩)
AL,ξ(1)

≤ min
z∈[0,∞)

φ(z), (11)

where we used the result of Makai and Martini [7].
Now suppose that 0 < t0 < (α + 1) ⟨g(K), ξ⟩. Then following the lower bound

construction in Theorem 4, we can construct a convex body M = conv(0, rBn−1
2 +

βξ, vξ) for some v ≥ hK(ξ), r > 0, and β such that 0 < β < (α + 1) ⟨g(K), ξ⟩,
whose sections orthogonal to ξ are Euclidean balls. Note that M ∩ (ξ⊥ +βξ) is the
maximal section of M in the direction ξ. Similarly to above, we may write (up to
a constant depending only on n):

rM,ξ(t) = A
1/(n−1)
M,ξ (t) =

{
(r/β)t t ∈ [0, β],
r

β−v (t− β) + r t ∈ (β, v].

Recall from Theorem 4 we proved ⟨g(M), ξ⟩ ≥ ⟨g(K), ξ⟩, and hence since β−v < 0,
it follows that

|M ∩ {x ∈ Rn : ⟨x, ξ⟩ = (α+ 1) ⟨g(M), ξ⟩}|
≤ |K ∩ {x ∈ Rn : ⟨x, ξ⟩ = (α+ 1) ⟨g(K), ξ⟩}| .

Now we want to show that volume of the maximal section of M is no smaller than
the volume of the maximal section of K. Again, suppose the opposite, that is

AK,ξ(t0) > AM,ξ(β).
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Then it follows by the construction of M and concavity of rM,ξ on its support that
β ≥ t0. Raising both sides to the power 1/(n− 1), we again obtain

rK,ξ(t0) > rM,ξ(β) = r.

Denote fK = (α + 1) ⟨g(K), ξ⟩. By the construction of M , we have rK,ξ(fK) =
rM,ξ(fK). Hence, we can compute

|M ∩ {x ∈ Rn : ⟨x, ξ⟩ ≤ fK}| =
∫ β

0

(
r

β

)n−1

tn−1 dt

+

∫ fK

β

(
r

β − v
(t− β) + r

)n−1

dt

=

∫ β

0

(
r

β

)n−1

tn−1 dt+

∫ fK

β

(
r − rK,ξ(fK)

β − fK
(t− β) + r

)n−1

dt

=
βrn−1

n
+
rnK,ξ(fK)− rn

rK,ξ(fK)− r

fK − β

n

≤ t0r
n−1

n
+
rnK,ξ(fK)− rn

rK,ξ(fK)− r

fK − t0
n

=

∫ t0

0

(
r

t0

)n−1

tn−1 dt+

∫ fK

t0

(
r − rK,ξ(fK)

t0 − fK
(t− t0) + r

)n−1

dt,

where we used β ≥ t0 for the above inequality. Write

ζ(t) =

{
(r/t0)t t ∈ [0, t0],
r−rK,ξ(fK)

t0−fK
(t− t0) + r t ∈ (t0, fK ].

Note that ζ(fK) = rK,ξ(fK). Since by assumption r < rK,ξ(t0), it follows from
concavity that ζ(t) < rK,ξ(t) for all t ∈ [0, fK), and thus we have∫ fK

0

ζn−1(t) dt <

∫ fK

0

AK,ξ(t) dt = |K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≤ fK}| .

Combining all of the above inequalities, we obtain

|L ∩ {x ∈ Rn : ⟨x, ξ⟩ ≤ fK}| < |K ∩ {x ∈ Rn : ⟨x, ξ⟩ ≤ fK}| ,

a contradiction to our construction in Theorem 4. Therefore, we must have

AK,ξ

(
t0) ≤ AL,ξ

(
β),

and hence, it suffices to work withM instead of K. Up to rescaling, we may assume
that hM (ξ) = 1 and

∣∣rBn−1
2

∣∣ = n. As before, we will define

M2 =M ∩ {x ∈ Rn | ⟨x, ξ⟩ ≥ β}.

Taking our computations from Theorem 4, we have |M2| = 1− β and∣∣M ∩H+
α

∣∣ = (1− fM )n

(1− β)n−1
,

where

fM = (α+ 1) ⟨g(M), ξ⟩ = β(n− 1) + 1

n+ 1
.
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Then by expressing the volumes of the sections we are interested in with respect to
M2 and M ∩H+

α , we can write

|M ∩ {x ∈ Rn : ⟨x, ξ⟩ = fM}|∣∣M ∩ (ξ⊥ + βξ)
∣∣ =

|M ∩H+
α |

|M2|
1− β

1− fM

=

(
1− fM
1− β

)n−1

.

Denote by ψ the above equation of β. Our goal is to find the infimum of ψ on
(0, α+1

−(n−1)α+2 ) (as taken from Theorem 4). One can compute that ψ is increasing

in β and therefore the infimum of ψ is given by

ψ(β)
β→0+−−−−−→

(
n− α

n+ 1

)n−1

. (12)

Now to determine the value of D(α, n) for α ∈ (0, 1/n], we need to find the lower
of the two constants in (11) and (12). It is enough to note for α ∈ (0, 1/n] that(

n− α

n+ 1

)n−1

≤
(

n

n+ 1

)n−1

,

and the result follows.
Discussing equality cases, we see for α ∈ (−1, 0] that equality follows from the

equality cases for the upper bound in Theorem 3 (which comes from Grünbaum’s
original theorem), and thus the equality bodies are, up to translation, cones of the
form L = conv(B, v) with B an (n − 1)-dimensional convex body lying parallel to
ξ⊥ in ξ+ and vertex v lying in ξ−. For α ∈ (0, 1/n], we have our convex body M
which is the union of two cones with a common base at βξ. We have equality in the
limit when β −→ 0+, thus the equality bodies are cones of the formM = conv(B, v)
with B an (n − 1)-dimensional convex body lying parallel to ξ⊥ in ξ− and vertex
v lying in ξ+; see Figure 5. □

Figure 5. Equality cases for Theorem 5.
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concave functions, Bull. Lond. Math. Soc. 50 (2018), no. 4, 745–752.

[9] S. Myroshnychenko, M. Stephen, and N. Zhang, Grünbaum’s inequality for sections, J.
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