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Chapter 1

Probability Theory

Throughout these notes we will fix a non-empty set 2.

Definition 1 (o-Algebra). Let A C P(Q). A is called a o-algebra if it contains
both @ and 2, and is closed under complements and countable unions.

As a result of this definition, we immediately see that A is closed under
countable intersections as well, since

N A=\ |J @\ 4.).

Moreover, if B,C € A then C\ B=CnN(\ B), so this shows that C'\ B € A.

Definition 2 (Algebra). Let A C P(Q2). A is called an algebra if it contains
both @ and 2, and is closed under set differences of two elements B, C of A.

It is easy to see that A is closed under finite unions and intersections. Indeed
if B,C € Athen BNC =B\ (Q2\C)and BUC =Q\ ((Q\ B)Nn(Q2\C)).

Definition 3 (Semi-Algebra). Let A C P(Q2). A is called a semi-algebra if it
contains both @ and €2, is closed under intersections of two elements B, C' of A,
and for any B,C € A with B C C one can write C'\ B as a union of finitely
many disjoint elements of A.

Note that every o-algebra is an algebra, which is in turn a semi-algebra.
Now we discuss rings and semi-rings.

Definition 4 (Ring). Let A C P(Q). A is called a ring if it contains &, and is
closed under set differences, intersections, and unions of two elements B, C' of

A.

Definition 5 (Semi-Ring). Let A C P(£2). A is called a semi-ring if it contains
@, is closed under intersections of two elements B, C' of A, and for any B,C € A
with B C C one can write C'\ B as a union of finitely many disjoint elements
of A.



If we start with a semi-ring A on ) then we can complete A to a ring A*
by taking closure under finite unions. Indeed, @ € A*. Since we take closure
under finite unions it follows that we are then closed under set-differences. We
are automatically closed under unions too then. Closure under intersections is
also just passed along.

The same argument works for the completion of a semi-algebra to an algebra.

Lemma 1. Let C be a collection of o-algebras in some set Q. Then
X={)4
AeC
s again a o-algebra.
Proof. Clear. O
This prompts the following definition.

Definition 6. Let F € P(2) be a set. We define o(F') to be the smallest
o-algebra that contains F.

o(F) = ﬂ{A : A sigma algebra on Q and F C A.}

Definition 7. A measure p on a o-algebra A is a function from A to [0, c0].
so that u(@) = 0 and p is countably additive (note that countable additivity
requires the sets to be disjoint).

Lemma 2. Let g : A — [0,00] be a countable additive set function such that
po(@) = 0 on an algebra A. Then pg extends to a measure on o(A), whose
restriction to A agrees with pyg.

Lemma 3. If p is a measure on a o-algebra A then for all B,C € A with
B C C one has u(B) < p(C).

Proof. Write C = BU (C'\ B). Then u(C) = u(B) 4+ u(C \ B) > u(B). O

Now that we have these definition we can talk about measure spaces. A
measure space (2, 4, pt) is a space with a non-empty set , a o—algebra A and
a measure u. If u(2) = 1 then we call (2, A, i) a probability space.

Lemma 4. If u is a measure on a o-algebra A then for {A,}52, C A one has

o ( An> <> u(Ay).

P’I“OOf. Write G; = A1, Gy = Ay \ Al, Gs = Aj \ (A1 U Ag) Clearly the G,

are disjoint and also each G, are contained in As, so apply countable additivity
and monotonicity. O



Example 1. The Borel o—algebra on the real line R is the algebra generated by
clopen intervals of the form (a,b] with a < b. (Also it is generated by intervals
of the form (—o0,t)).

Lemma 5. Suppose (2, A, ) is a measure space. If {B,} is an increasing
sequence of sets from A then

nhl,noo 1(Bn) = p < L_Jl Bn)

Lemma 6. Suppose (2, A, 1) is a measure space. If {Bp} is an decreasing
sequence of sets from A with pu(By) < oo for some k. Then

limp(By) = p (ﬂ Bn>

n=1

Given 2 we define the outer-measure of a function m : B — [0, 0] by

m*(A) —inf{im(Bn):Bn €eB:AC D Bn}.

Here B is just an arbitrary subset of P(€), and A is an arbitrary element of
P(£2), these need not be associated with a o-algebra. All we need is

U B, = Q.
B,€eB

Definition 8. Let £ C R. Then F is Lebesgue measurable iff there is a Borel
set A such that E C A and A*(A\ E) = 0. In this case we will have A(E) = A(4).

This shows essentially that Lebesgue measurable sets are essentially Borel
measurable sets that differ on a set of measure zero.

The collection of all Lebesgue measurable sets, denoted by L(R) forms a
o-algebra.

Definition 9. Let (X, A) and (Y, B) be two measure spaces. A function
f: X—Y
is measurable if f~1(S) € A for all S € B.

Note that every Lebesgue measurable function is Borel measurable, and to
check whether a function is Borel measurable is equivalent to checking preimages
of a generating set, since preimages play nicely under set operations.

Definition 10. Let (X, A, 1) be a measure space. A simple function f : X —
R is a function for which we can find m disjoint measurable subsets A1,..., A,
and m real numbers ¢y, ..., ¢, such that

m
f = Z CnXA,-
n=1



We define the Lebesgue integral of a simple function f by

/X P = 3 canlih).

Suppose now that f : X — R is a bounded g a.e. function that is Borel
measurable and non-negative. We then define

N
/Xf(w)du:sup{/xs(x)du:S:X—>R:s:Zinf{f(x):acEAn}XAn},

n=1

where we run over N € N and each A,, lies within the domain for which f is
bounded. If f is not nessecarily bounded p a.e. but Borel measurable and non-
negative then we define 4,, = f~1([0,n]), for which f,, = fxa, will be Borel
measurable. We define

/ f(@)dp= lim [ fo(2)dp.
X X

n—o0

Finally, for general Borel measurable functions f we define

| s@dn= [ f@dn= [ 1@ an

where fy = fxp and f_ = fyx, here P = f~1((0,00)) and N = f~1((~oc,0)).
Finally, we set

Jft@an= [ e [ 5

We say that f is integrable if

/X f(@)du

is finite. Note that f is integrable iff

/ 1 () dys < oo.
X

Theorem 7 (Monotone Convergence Theorem). Let (X, A, p) be a measure
space and {f,}52, be a sequence of Borel or Lebesgue measurable functions
such that the sequence is a non-negative sequence, also { f,(x)}°2 is increasing
for p almost every x € X. Then

n—oaoo n—moao0

tim [ @ = [ (i )@ dn



Theorem 8 (Dominated Convergence Theorem I). Let (X, A, 1) be a measure
space and { fn}521 be a sequence of Borel or Lebesgue measurable functions such
that the sequence is a non-negative sequence, also lim, o fn(x) exists for u
almost every x € X. Finally suppose for every n € N and p almost every x € X
one has f,(x) < (lim, 00 frn)(x). Then

tim [ @ = [ (5@ dn

n—aoo X n—moaoo

Theorem 9 (Dominated Convergence Theorem II (Negative Functions)). Let

(X, A, 1) be a measure space and {fn}52, be a sequence of Borel or Lebesgue

measurable functions such that lim,,__, fn(x) exists for u almost every x € X.
Suppose also there is an integrable function g : X — [0, 00] such that for every
n and p almost every x € X:

|fn(@)] < g(2).
Then

n——ao0

lim fr(x)du = / lim f,)(x)du,
and both sides are always finite.

Lemma 10 (Fatou). Let (X, A, u) be a measure space and {f,}22, a sequence
of non-negative functions. Then

/ (liminf f,)(z) dp < lim inf/ fu(x)dp.
b's b'e

Now we discuss CDF’s.

Theorem 11. Let F' : R — R be a right continuous, non-decreasing, and
non-constant. There there exists a unique Borel measure denoted dF' on R such
that dF (a,b]) = F(b) — F(a).

Definition 11. Let X : Q@ — R be (Borel or Lebesgue) measurable. X is
called a random variable.

X induces a probability distribution, which is a measure p : B(R) — [0, 00]
given by u(A) = P(X~'(A)). Using this notation, X also induces a CDF
denoted Fx : R — [0, 00, and defined by

Fx(t) = P(X (=00, 1)) = P(X < ¢).

Definition 12 (Independence For Sets). Let (2, A, P) be a probability space.
We say that {A,}ner (I countable) are independent if for all J C I finite one
has

Pl 4] =] P

jeJ jeJ



Definition 13 (Independence For o-Algebras). Let (2, A, P) be a probability
space. We say that {F,}ner (I countable) are independent o-algebras if all
collections of the form {A,, : A, € F,}>2, are independent as sets.

Definition 14 (Independence of Random Variables). Let (2, A, P) be a prob-
ability space. We say that {X,},cr (I countable) are independent random
variables if {o(X,)}ner are independent as o-algebras.

Definition 15. Let (X, A),(Y, B) be two measurable spaces. Then we can
define the (tensor) product o-algebra by

A@B=0c({CxD:C¢€ Aand D € B}).

Lemma 12. {C x D:C € A and D € B} forms a semi-algebra on X x Y.

Then the function 7(C' x D) = u(C)v(D) where p, v are measures on X and
Y respectively induce a measure denoted g ® v on X x Y by Caratheodory’s
extension theorem.

Theorem 13 (Tonelli’s Theorem). Let (X, A, u), (Y, B,v) be o—finite measure
spaces and assume that f: X xY — [0,00] is an A ® B measurable function.
Then for v almost every y € Y the function fY : X — [0,00] defined by
f¥(x) = f(x,y) is measurable and then F : Y — [0, 00] defined by

F(y) = [ 1) du
X
is measurable, and

| tewdwen = [ [ @i

The same statement holds respectively for the functions f* and then we obtain

/Xxyf(:r,y)d(/iééu):/Y/Xfy(ﬂc)dudz/:/X/ny(:r)dz/dp,

We define for a random variable X its expectation, given by
E(X)= / X(w)dP.
Q
Lemma 14. Let X : Q — R be a non-negative random variable. Then
E(X) :/ P(X > t)dt.
0
Lemma 15. Let X : Q@ — R be a non-negative random variable. Then
E(X|") = / rt" T P(|X| > t) dt,
0

forr e (1,00).



Lemma 16. Let X : Q@ — R be a non-negative random variable, and suppose
that E(X) < co. Then
lim tP(X >t)=0.
t—o0

Theorem 17 (Markov’s Inequality). Let X : Q — R be a non-negative random
variable and suppose that E(X) < oco. Then for every t > 0 we have

P(X>t)<P(X>1t)<

| =

E(X).

This inequality is useful when ¢ > E(X). Now recall the L, norms, and the
Lo norm || f||,, = esssup|f| =inf{M >0:|f| < M a.e.}.
Theorem 18. | /gl < Ifll, lgl, where

1/p+1/g=1
for all measurable functions f,g: X — R.

Corollary 1. Let X : Q@ — R be a random variable. Then for all p,q € (0,00)
with p < q, one has that

E(IX[")/? < B(X])Y1.

Using the above, one concludes that E(X)? < E(X?), and if B(X?) < o0
then Var(X) = E((X — E(X))?) is defined and finite. One also notes that
Var(X) = E(X?) — E(X)2.

Theorem 19 (Chebychev’s Inequality). Suppose that X : Q@ — R is a random
variable and assume that E(X?) < co. Then

P (|X —B(X)| > Var(X)) <1/r?

Theorem 20 (Jensen’s Inequality). Let ¢ : I — R be a convex function and
X be a random variable which takes on only values in I and is integrable (i.e.
E(|X]) < o). Then o(X) is a random variable, E(X) € I, and

p(E(X)) < E(p(X)).

Note that we can apply linearity of expectation to apply an analogous state-
ment for concave functions, but the inequality will be reversed.

Theorem 21 (Paley-Zygmund Inequality). Let X € R be a non-negative ran-
dom wvariable, and suppose that E(X?) < oo. Then for all t € [0,1] we have
that

P(X >tE(X)) > P(X >tE(X)) > (1—1)?




Theorem 22. Let X and Y be independent random variables defined on the
same probability space ). Suppose that f,g : R — R are Borel-Borel measurable
functions. Then f(X) and g(Y') are random variables. If g(X) and h(Y") are
integrable, that is E(g(X)) and E(h(Y)) are defined and finite, then

E(g(X)h(Y)) = E(g(X)E(h(Y))-

Recall that two random variables X and Y are independent iff their o —algebras
are independent iff for every A € o(X) and B € o(Y') one has

P(ANB) = P(A)P(B).

To see why f(X) is a random variable, note that for any Borel set A on R
one has (f(X))™1(A) = X~1(f~1(A)), but since f is Borel-Borel measurable
one has f~1(A) is a Borel set, and thus X ~'(f~1(A)) is an element of o(X)
which is a subset of our o-algebra.

Definition 16. Let X and Y be two random variables that are integrable. That
is, E(X), E(Y) exist and are finite. We define

cov(X,Y) = E((X — E(X))(Y - E(Y))),
assuming this expectation exists and is finite.

Corollary 2 (Corollary of Theorem 21). Let X and Y be independent random
variables and suppose that X and Y are both integrable. Then if cov(X,Y) is
defined we must have cov(X,Y) = 0.

Recall that the k—th moment for a real valued random variable x is
E(X") = / Xk (w)dP.
Q

Definition 17. The moment generating function of a random variable X is
defined as

Mx (t) = B(etX) = /Oo e dFx ().

—0o0

Note for all random variables X one has Mx (0) = 1. We say that the moment
generating function of X exists if there is a neighbourhood about 0 such that
M is finite on this neighbourhood. Here are some properties of MGF":

Lemma 23. For two random variables X and Y one has Mx(t) = My (t) iff
X andY have the same distribution.

Lemma 24. If X1,..., X, are independent random variabl;es and cg, ..., c, €
R then for Z = co+)_7_; ¢;X; one has Mz(t) = ' [[\_, My, (cit). In particular
for Xq,...X,, i.i.d and X = (1/n) >_1"_ | X; one has Mx(t) = Mx (t/n)".

Lemma 25. For a random variable X with MGF Mx (t) and A > 0 one has

P(X >t) <e MMx(N).



Lemma 26. For a non-negative random variable X with MGF Mx(t) AND

t > 0 one has L
E[XF < (=
XH < (-

Definition 18. The characteristic function of a real-valued random variable X
with CDF Fx is px(t) = E[e!X].

)* Mx (1)

Lemma 27. If Xq,..., X, are independent random variables and cg, . ..,c, € R
then for Z = co + 31—y ¢;X; one has pz(t) = "' [Ti px, (cit). In particular
if X1,..., Xy id.d and X = (1/n) 31| X; one has o<(t) = ox(t/n)".
Lemma 28. If E[X*] < oo then <pg]§) (t) = i* B[ Xk]eitX.

Lemma 29. For random variables X and 'Y one has Fx = Fy iff px = ¢y.

Lemma 30 (Convergence of Distributions). For a sequence of random variables
(Xn) if px, — @x point-wise for some random variable X then Fx, — Fx
point-wise.

Theorem 31 (Inversion). If ¢, is integrable w.r.t the Lebesgue measure then
the pdf fx exists and

1
2

/ 21 / t) exp(—iut) dA(t) du.

If that is not the case, then nevertheless at all contunuity points x for Fx(x)
one has

Fx(z) = hm/ o / t) exp(—iut) exp(—o?t?/2) dA(t) du.
7r

02—0

@ =5 [ " () exp(—iat) dA(D),

and

We now move onto convergences.

Definition 19 (Convergence in Distribution/Weakly/In Law). For a sequence
of real valued random variables, we say that X, —4 X if the CDF's pointwise
converge at all continuity points ¢t € R of Fx. That is,

lim P(X, <t)=P(X <t),

n—oo
for all t € R.

Definition 20. Let Cp(R) be the space of all continuous bounded real-valued
functions on R. For the measure space (R,B) we say that u, is to converge
weakly to p if
i [ 0du = [

— 00

n—>oo

for all f € Cp(R).

10



Definition 21. Convergence in Distribution Again Let (X,) be a sequence

of real-valued random variables with common domain being a measure space
(Q, A, P). We say X,, —4 X if the induced measures

Hn — [
in measure. Here the induced measure of a random variable Y is PoY 1.

Theorem 32 (Portmanteau). Let (2, A, P) be a probability space with real-
valued random variables (X,,). The following are equivalent:

e P(X, <z) — P(X <z) for all continuity points of P(X < x).
e E[f(X,)] — E[f(z)] for all f: R — R bounded and continuous.
e E[f(X,)] — E[f(z)] for all f: R — R bounded and unif. continuous.

limsup,,_ ., P(X, € C) < P(X € C) for all C closed.

liminf,,_, P(X, € O) > P(X € O) for all O open.

lim, oo P(X, € A) = P(X € A) for all A contunuity sets, (i.e. sets B
which satisfy P(Y € 0B) = 0. for a given r.v. Y)

Definition 22. Let (X,) be a sequence of meausrable functions. We say that
X, —p X if for any € > 0 one has lim, ., P(|X, — X| > ¢) = 0. If
P(lim,— o X,, — X) = 1 then we say that X,, —, X, called almost
sure convergence.

Lemma 33. Let X, be i.i.d. with mean 0 and variance 1. Furthermore, let
Sp = >, X;. Then Var(S,) = n and Var(S,/n) = 1/n and P(|S,/n| > €) <
1/(ne?) —n_s00 0, 80 we have convergence to zero in probability.

Definition 23. For a probability space (2, A, P) let (A;) be any sequence of

sets. Define -
limsup = ﬂ U A;

i—>00

i=1j>1
and
o0
liminf = | J (1) 4;.
1—00
i=1j>1

In probability we say that each A; are events of w € Q. Then the lim sup is the
events of w which happen infinitely often and liminf is the set of events which
happen eventually.

Lemma 34 (Borel Cantelli Lemma 1). Let (A;) be a sequence of measurable

)
sets with >, P(A;) < co. Then P(limsup; 4;) = 0.

Proof. By assumption lim; o0 >, ; P(A4;) = 0. Then for any k € N we have
P(limsup; 4;) = P(NZ, Ujs; 4j) < P(Ujs i 45) < 22555 P(4;) — 0. O

11



Lemma 35 (Borel Cantelli Lemma 2). Let (A;) be a sequence of measurable
sets be independent such that Y .-, P(A;) = co. Then P(limsup; A;) = 1.

Proof. Recall that 1—t < et for all £ € R and that A; are a sequence of indepen-
dent sets implies that A¢ is. Then for any ¢ € N and k > i one has P(ﬂ;?:l AS) =

Hf:i[l — P(4;)] < exp(— Zf:l P(A;)) — 0. Thus, P(;-,; Aj) = 0 for any
choice of i, so P(limsup; 4;) = P(UZ, N5 45) = 1 = P(NZ1Uj»i 45) =
1. U

Corollary 3. Let (X,) be a sequence of random wvariables such that for all
e >0 one has Y .o, P(|X, — X| >¢) < oco. Then |X,, — X| —4.5. 0. That is,
Xn(w) — X(w) for almost all w € Q.

Proof. For each k € N, Y>> | P(|X,, — X| > 27%) < co. Then BC1 says that
for n sufficiently large one has |X,, — X| < 27% a.s., that is for all w ¢ Ny, for
some measure zero set Ni. The union of a countable amount of measure zero
sets is again measure zero, so we have |X,, — X|(w) — 0 for all w € ;- ; Ni,
which is | X,, — X| —4.5. 0 O

Corollary 4. Let (X,,) be a sequence of random variables since that X, —p
X. Then there is a subsequence n — 0o | X, — X| —4.. 0.

Proof. As X,, —p X we can choose ny, such that P(|X,, — X| >27F) < 27F
and so Y P(|X,, — X| > 27%) < oo, so by the previous corollary we conclude
that |X,., — X| —ra.s. 0. O

Corollary 5. Let (X,,) be a sequence of random wvariables such that for some
p>0> E[|X, — X|]P <oco. Then | X,, — X| —4.5. 0.

Definition 24. We say that a sequence of random variables X,, —» X
(convergence in LP) if [| X, — X{|, — 0. This is equivalent to E'|X,, — X —
0.

Convergence in LP implies convergence in probability. Just consider Markov’s
inequality applied to the random variable |X,, — X|*.
We now prove versions of the strong law of large numbers.

Theorem 36. If (X,,) are i.i.d. random variables from Q to R. Denote S, =
X1 +...+ X, If E[X1] < oo then Sy /n —q.s. F[X1].

Proof. Lec 22. O

Theorem 37 (Parseval’s Formula).

1> 2
— t)* dt
o | lpx ()" dt < oo
iff
/ fx(®)?dt < 0o

and these integrals coincide.

12



Proof. Let X’ be an ii.d copy of X. Then ox_x/(t) = px(t)o(—X")(t) =
ox(O)Px (1) = |ox (1)) . Similarly,

[e )

|Fx (8))? dt < oo.
oo

fx—x/(t) = /_Z Ix@)fox(t—x)dr < /

But then,

Fxxr(0) = %/w ox_x(t)dt = %/_OO ox (D2 di = /_OO Fx(@)fox(—2)da = /OO Fx () de.

—o0
O
Now we discuss the Central Limit Theorem:

Theorem 38. Let (X,,) be a sequence of i.i.d. random variables from  to R
and denote S, = X1+...+X,,. If E[X1] =0 and E[X?] < oo then S, /\/1l —q
Z ~ N(0,0?) where 0% = Var(Xy).

Unlike SLLN, we now require a finite second momnet, otherwise our variance
may be undefined. Before proving this we need some work:

Theorem 39 (Prokhorov’s Theorem). For a sequence of probability measures
(;) if the sequence is uniformy tight then it is sequentially compact.

Uniformly tight means that for all € > 0 there is a compact set K such that
wi(K) > 1—¢ for all i. Sequentially compact means that for every subsequence
of (u;) there is a weakly convergent subsubsequence.

Lemma 40. If (u;) and p are probability measures such that (u;) is sequentially
compact to u, then u; — p weakly.

Proof. Suppose we do not have weak convergence for p;. Then there is a
bounded continuous function f such that [ fdu; /— [ fdu. Then there is a
subsequence i, and € > 0 such that

‘/fduik—/fdu‘ >e,

for all 4. But this must have a convergent sub-subsequence, which is a contra-
diction. O

Lemma 41. Let X be a random variable and § > 0. Then

5

PXI>2/0) < 5 [ 1= px(0)ar.

Theorem 42 (Levy Continuity Theorem). Let (X,,) be a sequence of random
variables with px, (t) — o(t) for all t € R, with ¢ continuous at t = 0. Then
there exists a random variable X with px = ¢ and X,, —q4 X.

13



Proof. As we have continuity of ¢ at 0, we see that for all € > 0 there is § > 0
such that |1 — ¢(t)| < e for all [¢t| < 6. Then

n—o0

g L
lim 5/_5[1—cpxn(t)]dt: 5/_6[1—@)(@)](”»

so for large enough n we have

1 6
1 / [ — g, (8)] dt < 3¢
o) s

and thus by the previous Lemma we see P(|X,| > 2/§) < € so (X,,) is tight.
Then by Prokhorov, there is a convergent subsequence X,, —4 X, which
means that ¢ Xn, 7 PX = For any such subsequence, we have a convergent
subsubsequence, all of these must have char functions which converge to ¢, so
we conclude that they all converge in distribution to X, so by the previous
lemma we see that X,, — X. O

Proof of CLT. By independence, E(n~'/2S,)? = EXZ?. For any ¢ > 0 there
is M. > 0 such that EX}?/M. < e. Hence, P(|n"/28,| > M.) < e. This

means that (n='/2S,) is tight. Let ¢ be the characteristic function of Xj.

Then ¢(0) = ¢’(0) = 0. Also, ¢”(0) = o2, so by Taylor’s theorem we have

o(t) =1 —02t2/2 + o(t?). Therefore

Qn1/25, (1) = (R~ 20" = (1 — 022 /20 + o(t2/n))" —s e~ /2.
Thus we conclude that n=/2S,, —4 Z ~ N(0,02). O
Theorem 43 (Hoeffding’s Inequality). Let Xi,...,X,, be independent such that
there exists a;,b; such that a; < X; <b;. Then

2t2
P(S, — ES, >1t) <exp (W>
=1\t 4

Proof. Let X € [a,b]. Then for any A > 0 we have
P(X — EX >t) < e ME[exp(A\(X — EX))].
WLOG, EX = 0. Then since e¥ is convex in A we have

X < b_XeAa+X_aeAb

“b—a b—a
which implies
Ee)\X - beAa _ aekb
— b —a b

hence Ee*X < ¢=2*(0=0)*/8 Then we obtain
_ < i _ 2 )2
P(S,—ES,>1t) < )1\r>1%exp ( At + (1/8)A Z(bz a;) )
which is optimized for A = 4t/(3" (b; — a;)?), see Lec 29. O

14



Theorem 44 (Bernstein’s). Let Xi,..., X, be independent such that there is
¢ >0 such that | X;| < c for alli and Y. | EX? <wv. Then

42

Theorem 45 (Continuous Mapping Theorem). Let g : R® — R™ be a function
and let D, be the set of discontinuities of g. Let X, (X) be a sequence of random
variables, vectors, matrices and assume that P(X € Dg) = 0. Then

X —a X = g(Xi) —a 9(X),
Xy —p X = g(Xi) —p g9(X),
Xk —a.s. X - g(Xk) —a.s. g(X)v

In the above theorem, we make the natural generalization of convergences
by using a distance function and viewing R" as a metric space. Convergence in
distribution is taken as a definition of the equivalencies by Portmanteau.

Theorem 46 (Slutsky’s). Let (Xi), (Yr) be sequences of real, vector, matriz
valued random variables and suppose that X, —>q X and Yy, —p cg where X
18 a real, vector, matriz valued random variable and cqy is either a real, vector,
or matriz. Then
X +Y, —a X +ec,

Xk . Yk —>d XC,

Xi/Ye —a X/c,
where the last one makes sense iff ¢ is invertible.

Now we move onto comparing modes of convergence. We have the following
implications:

Xk —>a.soerX — Xk —)pX — Xk —>dX
Xy —ac€R = X, —p c € R(here cis a constant r.v.)

Xk—>dX/'5> Xk—>pX/b> Xk—>a.s.orLPX

First Statement. For almost sure convergence implies probability, if X, —, .

X then P(limg_oo X = X) = 1, so if we set ¢ > 0 then | X, — X| <

SUPy>,, | Xk — X/, hence (supys,, |Xx — X| <¢) C (| X, — X| < &), 50 P(supy>,, | X — X| <
£) < P(|X, — X| < ¢) < 1. Taking limits implies -

P(X,—X|<e) =1,
so P(| X, — X|>¢)=0.
For convergence in probability implies convergence in distribution, if X;, —p
X then for all € > 0 one has P(|X; — X| > ¢) — 0. Let f be any bounded and

continuous function. Then E[|f(X}) — f(X)|] — 0 by dominated convergence,

so by Portmanteau we conclude X — 4 X.
O
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Third Statement. For convergence in distribution does not imply convergence
in probability note that if Q = {0,1} and P(w = 1) = P(w = 2) = 1/2 take
X,(0)=0=X(1) and X,,(1) =1 = X(0) then | X, (w) — X (w)| = 1 so we don’t
have convergence in probability, but Fx(x) = Fx, (x) which is 1/2 for z < 1
and 1 for x > 1.

Now for convergence in probability does not imply convergence in a.e., take
[0,1] and cut it uniformly into two evenly spaced intervals [0,1/2] and [1/2,1].
Take f1, fo to be the characteristic functions of these. Do the same thing for
three intervals and so on, then {f,,} is easily seen to converge to 0 in probability
and in LP, but it does not converge almost surely, because we can find subse-
quences of {f,,} which will send our given input to 0 and to 1 because our point
will lie inside and outside infinitely many intervals.

For convergence in probability does not imply convergence in LP take (X,)
such that P(X,, = 1) = 1/n and P(X, = 0) = 1 —1/n. Then X,, — 0
in probability, but we don’t have convergence to zero in norm, and also since
> P(X,, =1) = co and the events are independent we conclude that BCL says
that P(limsup, {X, =1}) = 1. O

Lemma 47. Convergence in probability implies the existence of a subsequnece
which converges a.e.

Proof. Take a sequence (ny) which works for almost all w. To see this, fix a
subsquence (ny) such that for each k one has P(|X,, — X| > 27F%) <27% We
construct this subsequence by inductioon and applying convergence of proba-
bility with ¢ = 1/27%. Then O

Lemma 48. Suppose (Xy), (Yx) are sequences of random variables/vectors/matrices
such that
X —q X.

If dist (X, Yi) —p 0 then Yy —q X as well.
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