Probability Notes

Brayden Letwin

Last Updated: September 21, 2025

Contents

1 Probability Theory

 $\mathbf{2}$

Chapter 1

Probability Theory

Throughout these notes we will fix a non-empty set Ω .

Definition 1 (σ -Algebra). Let $A \subset \mathcal{P}(\Omega)$. A is called a σ -algebra if it contains both \varnothing and Ω , and is closed under complements and countable unions.

As a result of this definition, we immediately see that A is closed under countable intersections as well, since

$$\bigcap_{n=1}^{\infty} A_n = \Omega \setminus \bigcup_{n=1}^{\infty} (\Omega \setminus A_n).$$

Moreover, if $B, C \in A$ then $C \setminus B = C \cap (\Omega \setminus B)$, so this shows that $C \setminus B \in A$.

Definition 2 (Algebra). Let $A \subset \mathcal{P}(\Omega)$. A is called an algebra if it contains both \emptyset and Ω , and is closed under set differences of two elements B, C of A.

It is easy to see that A is closed under finite unions and intersections. Indeed if $B, C \in A$ then $B \cap C = B \setminus (\Omega \setminus C)$ and $B \cup C = \Omega \setminus ((\Omega \setminus B) \cap (\Omega \setminus C))$.

Definition 3 (Semi-Algebra). Let $A \subset \mathcal{P}(\Omega)$. A is called a semi-algebra if it contains both \emptyset and Ω , is closed under intersections of two elements B, C of A, and for any $B, C \in A$ with $B \subset C$ one can write $C \setminus B$ as a union of finitely many disjoint elements of A.

Note that every σ -algebra is an algebra, which is in turn a semi-algebra. Now we discuss rings and semi-rings.

Definition 4 (Ring). Let $A \subset \mathcal{P}(\Omega)$. A is called a ring if it contains \emptyset , and is closed under set differences, intersections, and unions of two elements B, C of A.

Definition 5 (Semi-Ring). Let $A \subset \mathcal{P}(\Omega)$. A is called a semi-ring if it contains \emptyset , is closed under intersections of two elements B, C of A, and for any $B, C \in A$ with $B \subset C$ one can write $C \setminus B$ as a union of finitely many disjoint elements of A.

If we start with a semi-ring A on Ω then we can complete A to a ring A^* by taking closure under finite unions. Indeed, $\emptyset \in A^*$. Since we take closure under finite unions it follows that we are then closed under set-differences. We are automatically closed under unions too then. Closure under intersections is also just passed along.

The same argument works for the completion of a semi-algebra to an algebra.

Lemma 1. Let C be a collection of σ -algebras in some set Ω . Then

$$X = \bigcap_{A \in \mathcal{C}} A$$

is again a σ -algebra.

This prompts the following definition.

Definition 6. Let $F \in \mathcal{P}(\Omega)$ be a set. We define $\sigma(F)$ to be the smallest σ -algebra that contains F.

$$\sigma(F) = \bigcap \{A : A \text{ sigma algebra on } \Omega \text{ and } F \subset A.\}$$

Definition 7. A measure μ on a σ -algebra A is a function from A to $[0, \infty]$. so that $\mu(\emptyset) = 0$ and μ is countably additive (note that countable additivity requires the sets to be disjoint).

Lemma 2. Let $\mu_0: A \longrightarrow [0, \infty]$ be a countable additive set function such that $\mu_0(\emptyset) = 0$ on an algebra A. Then μ_0 extends to a measure on $\sigma(A)$, whose restriction to A agrees with μ_0 .

Lemma 3. If μ is a measure on a σ -algebra A then for all $B, C \in A$ with $B \subset C$ one has $\mu(B) \leq \mu(C)$.

Proof. Write
$$C = B \cup (C \setminus B)$$
. Then $\mu(C) = \mu(B) + \mu(C \setminus B) \ge \mu(B)$.

Now that we have these definition we can talk about measure spaces. A measure space (Ω, A, μ) is a space with a non-empty set Ω , a σ -algebra A and a measure μ . If $\mu(\Omega) = 1$ then we call (Ω, A, μ) a probability space.

Lemma 4. If μ is a measure on a σ -algebra A then for $\{A_n\}_{n=1}^{\infty} \subset A$ one has

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n).$$

Proof. Write $G_1 = A_1$, $G_2 = A_2 \setminus A_1$, $G_3 = A_3 \setminus (A_1 \cup A_2)$. Clearly the G_n are disjoint and also each G_n are contained in A_2 , so apply countable additivity and monotonicity.

Example 1. The Borel σ -algebra on the real line \mathbb{R} is the algebra generated by clopen intervals of the form (a, b] with $a \leq b$. (Also it is generated by intervals of the form $(-\infty, t)$).

Lemma 5. Suppose (Ω, A, μ) is a measure space. If $\{B_n\}$ is an increasing sequence of sets from A then

$$\lim_{n \to \infty} \mu(B_n) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right)$$

Lemma 6. Suppose (Ω, A, μ) is a measure space. If $\{B_n\}$ is an decreasing sequence of sets from A with $\mu(B_k) < \infty$ for some k. Then

$$\lim_{n \to \infty} \mu(B_n) = \mu\left(\bigcap_{n=1}^{\infty} B_n\right)$$

Given Ω we define the outer-measure of a function $m: B \longrightarrow [0, \infty]$ by

$$m^*(A) = \inf \left\{ \sum_{n=1}^{\infty} m(B_n) : B_n \in B : A \subset \bigcup_{n=1}^{\infty} B_n \right\}.$$

Here B is just an arbitrary subset of $\mathcal{P}(\Omega)$, and A is an arbitrary element of $\mathcal{P}(\Omega)$, these need not be associated with a σ -algebra. All we need is

$$\bigcup_{B_n \in B} B_n = \Omega.$$

Definition 8. Let $E \subset \mathbb{R}$. Then E is Lebesgue measurable iff there is a Borel set A such that $E \subset A$ and $\lambda^*(A \setminus E) = 0$. In this case we will have $\lambda(E) = \lambda(A)$.

This shows essentially that Lebesgue measurable sets are essentially Borel measurable sets that differ on a set of measure zero.

The collection of all Lebesgue measurable sets, denoted by $L(\mathbb{R})$ forms a σ -algebra.

Definition 9. Let (X, A) and (Y, B) be two measure spaces. A function

$$f: X \longrightarrow Y$$

is measurable if $f^{-1}(S) \in A$ for all $S \in B$.

Note that every Lebesgue measurable function is Borel measurable, and to check whether a function is Borel measurable is equivalent to checking preimages of a generating set, since preimages play nicely under set operations.

Definition 10. Let (X, A, μ) be a measure space. A simple function $f: X \longrightarrow \mathbb{R}$ is a function for which we can find m disjoint measurable subsets A_1, \ldots, A_m and m real numbers c_1, \ldots, c_m such that

$$f = \sum_{n=1}^{m} c_n \chi_{A_n}.$$

We define the Lebesgue integral of a simple function f by

$$\int_X f(x) d\mu = \sum_{n=1}^m c_n \mu(A_n).$$

Suppose now that $f: X \longrightarrow \mathbb{R}$ is a bounded μ a.e. function that is Borel measurable and non-negative. We then define

$$\int_X f(x)\,d\mu = \sup\left\{\int_X s(x)\,d\mu: s: X \longrightarrow \mathbb{R}: s = \sum_{n=1}^N \inf\{f(x): x \in A_n\}\chi_{A_n}\right\},$$

where we run over $N \in \mathbb{N}$ and each A_n lies within the domain for which f is bounded. If f is not nessecarily bounded μ a.e. but Borel measurable and nonnegative then we define $A_n = f^{-1}([0,n])$, for which $f_n = f\chi_{A_n}$ will be Borel measurable. We define

$$\int_X f(x) \, d\mu = \lim_{n \to \infty} \int_X f_n(x) \, d\mu.$$

Finally, for general Borel measurable functions f we define

$$\int_{X} f(x) \, d\mu = \int_{X} f_{+}(x) \, d\mu - \int_{X} f_{-}(x) \, d\mu,$$

where $f_+ = f\chi_P$ and $f_- = f\chi_N$, here $P = f^{-1}([0, \infty))$ and $N = f^{-1}((-\infty, 0))$. Finally, we set

$$\int_{X} |f|(x) \, d\mu = \int_{X} f_{+}(x) \, d\mu + \int_{X} f_{-}(x) \, d\mu.$$

We say that f is integrable if

$$\int_{X} f(x) \, d\mu$$

is finite. Note that f is integrable iff

$$\int_{X} |f|(x) \, d\mu < \infty.$$

Theorem 7 (Monotone Convergence Theorem). Let (X, A, μ) be a measure space and $\{f_n\}_{n=1}^{\infty}$ be a sequence of Borel or Lebesgue measurable functions such that the sequence is a non-negative sequence, also $\{f_n(x)\}_{n=1}^{\infty}$ is increasing for μ almost every $x \in X$. Then

$$\lim_{n \to \infty} \int_X f_n(x) d\mu = \int_X (\lim_{n \to \infty} f_n)(x) d\mu.$$

Theorem 8 (Dominated Convergence Theorem I). Let (X, A, μ) be a measure space and $\{f_n\}_{n=1}^{\infty}$ be a sequence of Borel or Lebesgue measurable functions such that the sequence is a non-negative sequence, also $\lim_{n\to\infty} f_n(x)$ exists for μ almost every $x \in X$. Finally suppose for every $n \in \mathbb{N}$ and μ almost every $x \in X$ one has $f_n(x) \leq (\lim_{n\to\infty} f_n)(x)$. Then

$$\lim_{n \to \infty} \int_X f_n(x) d\mu = \int_X (\lim_{n \to \infty} f_n)(x) d\mu.$$

Theorem 9 (Dominated Convergence Theorem II (Negative Functions)). Let (X, A, μ) be a measure space and $\{f_n\}_{n=1}^{\infty}$ be a sequence of Borel or Lebesgue measurable functions such that $\lim_{n\to\infty} f_n(x)$ exists for μ almost every $x\in X$. Suppose also there is an integrable function $g: X \longrightarrow [0, \infty]$ such that for every n and μ almost every $x\in X$:

$$|f_n(x)| \le g(x).$$

Then

$$\lim_{n \to \infty} \int_X f_n(x) d\mu = \int_X (\lim_{n \to \infty} f_n)(x) d\mu,$$

and both sides are always finite.

Lemma 10 (Fatou). Let (X, A, μ) be a measure space and $\{f_n\}_{n=1}^{\infty}$ a sequence of non-negative functions. Then

$$\int_{X} (\liminf f_n)(x) \, d\mu \le \liminf \int_{X} f_n(x) \, d\mu.$$

Now we discuss CDF's.

Theorem 11. Let $F : \mathbb{R} \longrightarrow \mathbb{R}$ be a right continuous, non-decreasing, and non-constant. There there exists a unique Borel measure denoted dF on \mathbb{R} such that dF(a,b] = F(b) - F(a).

Definition 11. Let $X:\Omega \longrightarrow \mathbb{R}$ be (Borel or Lebesgue) measurable. X is called a random variable.

X induces a probability distribution, which is a measure $\mu : \mathcal{B}(\mathbb{R}) \longrightarrow [0, \infty]$ given by $\mu(A) = P(X^{-1}(A))$. Using this notation, X also induces a CDF denoted $F_X : \mathbb{R} \longrightarrow [0, \infty]$, and defined by

$$F_X(t) = P(X^{-1}((-\infty, t])) = P(X \le t).$$

Definition 12 (Independence For Sets). Let (Ω, A, P) be a probability space. We say that $\{A_n\}_{n\in I}$ (I countable) are independent if for all $J\subset I$ finite one has

$$P\left(\bigcap_{j\in J} A_j\right) = \prod_{j\in J} P(A_j).$$

Definition 13 (Independence For σ -Algebras). Let (Ω, A, P) be a probability space. We say that $\{F_n\}_{n\in I}$ (I countable) are independent σ -algebras if all collections of the form $\{A_n: A_n \in F_n\}_{n=1}^{\infty}$ are independent as sets.

Definition 14 (Independence of Random Variables). Let (Ω, A, P) be a probability space. We say that $\{X_n\}_{n\in I}$ (I countable) are independent random variables if $\{\sigma(X_n)\}_{n\in I}$ are independent as σ -algebras.

Definition 15. Let (X, A), (Y, B) be two measurable spaces. Then we can define the (tensor) product σ -algebra by

$$A \otimes B = \sigma(\{C \times D : C \in A \text{ and } D \in B\}).$$

Lemma 12. $\{C \times D : C \in A \text{ and } D \in B\}$ forms a semi-algebra on $X \times Y$.

Then the function $\pi(C \times D) = \mu(C)\nu(D)$ where μ, ν are measures on X and Y respectively induce a measure denoted $\mu \otimes \nu$ on $X \times Y$ by Caratheodory's extension theorem.

Theorem 13 (Tonelli's Theorem). Let $(X, A, \mu), (Y, B, \nu)$ be σ -finite measure spaces and assume that $f: X \times Y \longrightarrow [0, \infty]$ is an $A \otimes B$ measurable function. Then for ν almost every $y \in Y$ the function $f^y: X \longrightarrow [0, \infty]$ defined by $f^y(x) = f(x, y)$ is measurable and then $F: Y \longrightarrow [0, \infty]$ defined by

$$F(y) = \int_X f^y(x) \, d\mu,$$

is measurable, and

$$\int_{X\times Y} f(x,y) d(\mu \otimes \nu) = \int_{Y} \int_{X} f^{y}(x) d\mu d\nu.$$

The same statement holds respectively for the functions f^x and then we obtain

$$\int_{X\times Y} f(x,y) d(\mu\otimes\nu) = \int_{Y} \int_{X} f^{y}(x) d\mu d\nu = \int_{X} \int_{Y} f^{y}(x) d\nu d\mu.$$

We define for a random variable X its expectation, given by

$$E(X) = \int_{\Omega} X(\omega) dP.$$

Lemma 14. Let $X: \Omega \longrightarrow \mathbb{R}$ be a non-negative random variable. Then

$$E(X) = \int_0^\infty P(X > t) dt.$$

Lemma 15. Let $X: \Omega \longrightarrow \mathbb{R}$ be a non-negative random variable. Then

$$E(|X|^r) = \int_0^\infty rt^{r-1}P(|X| > t) dt,$$

for $r \in (1, \infty)$.

Lemma 16. Let $X : \Omega \longrightarrow \mathbb{R}$ be a non-negative random variable, and suppose that $E(X) < \infty$. Then

$$\lim_{t \to \infty} tP(X > t) = 0.$$

Theorem 17 (Markov's Inequality). Let $X : \Omega \longrightarrow \mathbb{R}$ be a non-negative random variable and suppose that $E(X) < \infty$. Then for every $t \geq 0$ we have

$$P(X > t) \le P(X \ge t) \le \frac{1}{t}E(X).$$

This inequality is useful when t > E(X). Now recall the L_p norms, and the L_∞ norm $||f||_\infty = \operatorname{esssup} |f| = \inf\{M \ge 0 : |f| \le M \text{ a.e.}\}.$

Theorem 18. $||fg||_1 \le ||f||_p ||g||_q$ where

$$1/p + 1/q = 1$$

for all measurable functions $f, g: X \longrightarrow \mathbb{R}$.

Corollary 1. Let $X : \Omega \longrightarrow \mathbb{R}$ be a random variable. Then for all $p, q \in (0, \infty)$ with p < q, one has that

$$E(|X|^p)^{1/p} \le E(|X|^q)^{1/q}$$
.

Using the above, one concludes that $E(X)^2 \leq E(X^2)$, and if $E(X^2) < \infty$ then $\text{Var}(X) = E((X - E(X))^2)$ is defined and finite. One also notes that $\text{Var}(X) = E(X^2) - E(X)^2$.

Theorem 19 (Chebychev's Inequality). Suppose that $X : \Omega \longrightarrow \mathbb{R}$ is a random variable and assume that $E(X^2) < \infty$. Then

$$P\left(|X - E(X)| > r\sqrt{\operatorname{Var}(X)}\right) \le 1/r^2$$

Theorem 20 (Jensen's Inequality). Let $\varphi: I \longrightarrow \mathbb{R}$ be a convex function and X be a random variable which takes on only values in I and is integrable (i.e. $E(|X|) < \infty$). Then $\varphi(X)$ is a random variable, $E(X) \in I$, and

$$\varphi(E(X)) \le E(\varphi(X)).$$

Note that we can apply linearity of expectation to apply an analogous statement for concave functions, but the inequality will be reversed.

Theorem 21 (Paley-Zygmund Inequality). Let $X \in \mathbb{R}$ be a non-negative random variable, and suppose that $E(X^2) < \infty$. Then for all $t \in [0,1]$ we have that

$$P(X \ge tE(X)) \ge P(X > tE(X)) \ge (1 - t)^2 \frac{E(X)^2}{E(X^2)}.$$

Theorem 22. Let X and Y be independent random variables defined on the same probability space Ω . Suppose that $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ are Borel-Borel measurable functions. Then f(X) and g(Y) are random variables. If g(X) and h(Y) are integrable, that is E(g(X)) and E(h(Y)) are defined and finite, then

$$E(g(X)h(Y)) = E(g(X))E(h(Y)).$$

Recall that two random variables X and Y are independent iff their σ -algebras are independent iff for every $A \in \sigma(X)$ and $B \in \sigma(Y)$ one has

$$P(A \cap B) = P(A)P(B).$$

To see why f(X) is a random variable, note that for any Borel set A on \mathbb{R} one has $(f(X))^{-1}(A) = X^{-1}(f^{-1}(A))$, but since f is Borel-Borel measurable one has $f^{-1}(A)$ is a Borel set, and thus $X^{-1}(f^{-1}(A))$ is an element of $\sigma(X)$ which is a subset of our σ -algebra.

Definition 16. Let X and Y be two random variables that are integrable. That is, E(X), E(Y) exist and are finite. We define

$$cov(X, Y) = E((X - E(X))(Y - E(Y))),$$

assuming this expectation exists and is finite.

Corollary 2 (Corollary of Theorem 21). Let X and Y be independent random variables and suppose that X and Y are both integrable. Then if cov(X,Y) is defined we must have cov(X,Y) = 0.

Recall that the k-th moment for a real valued random variable x is

$$E(X^k) = \int_{\Omega} X^k(\omega) \, dP.$$

Definition 17. The moment generating function of a random variable X is defined as

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} dF_X(x).$$

Note for all random variables X one has $M_X(0) = 1$. We say that the moment generating function of X exists if there is a neighbourhood about 0 such that M_X is finite on this neighbourhood. Here are some properties of MGF:

Lemma 23. For two random variables X and Y one has $M_X(t) = M_Y(t)$ iff X and Y have the same distribution.

Lemma 24. If X_1, \ldots, X_n are independent random variably; and $c_0, \ldots, c_n \in \mathbb{R}$ then for $Z = c_0 + \sum_{i=1}^n c_i X_i$ one has $M_Z(t) = e^{c_0 t} \prod_{i=1}^n M_{x_i}(c_i t)$. In particular for X_1, \ldots, X_n i.i.d and $\overline{X} = (1/n) \sum_{i=1}^n X_i$ one has $M_{\overline{X}}(t) = M_X(t/n)^n$.

Lemma 25. For a random variable X with MGF $M_X(t)$ and $\lambda > 0$ one has

$$P(X > t) \le e^{-\lambda t} M_X(\lambda).$$

Lemma 26. For a non-negative random variable X with MGF $M_X(t)$ AND t > 0 one has

 $E[X^k] \le (\frac{k}{te})^k M_X(t)$

Definition 18. The characteristic function of a real-valued random variable X with CDF F_X is $\varphi_X(t) = E[e^{itX}]$.

Lemma 27. If X_1, \ldots, X_n are independent random variables and $c_0, \ldots, c_n \in \mathbb{R}$ then for $Z = c_0 + \sum_{i=1}^n c_i X_i$ one has $\varphi_Z(t) = e^{ic_0 t} \prod_{i=1}^n \varphi_{X_i}(c_i t)$. In particular if X_1, \ldots, X_n i.i.d and $\overline{X} = (1/n) \sum_{i=1}^n X_i$ one has $\varphi_{\overline{X}}(t) = \varphi_X(t/n)^n$.

Lemma 28. If $E[X^k] < \infty$ then $\varphi_X^{(k)}(t) = i^k E[X^k] e^{itX}$.

Lemma 29. For random variables X and Y one has $F_X = F_Y$ iff $\varphi_X = \varphi_Y$.

Lemma 30 (Convergence of Distributions). For a sequence of random variables (X_n) if $\varphi_{X_n} \longrightarrow \varphi_X$ point-wise for some random variable X then $F_{X_n} \longrightarrow F_X$ point-wise.

Theorem 31 (Inversion). If φ_x is integrable w.r.t the Lebesgue measure then the pdf f_X exists and

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(t) \exp(-ixt) d\lambda(t),$$

and

$$F_X(x) = \int_{-\infty}^x \frac{1}{2\pi} \int_{-\infty}^\infty \varphi(t) \exp(-iut) \, d\lambda(t) \, du.$$

If that is not the case, then nevertheless at all contunuity points x for $F_X(x)$ one has

$$F_X(x) = \lim_{\sigma^2 \to 0} \int_{-\infty}^x \frac{1}{2\pi} \int_{-\infty}^\infty \varphi(t) \exp(-iut) \exp(-\sigma^2 t^2/2) d\lambda(t) du.$$

We now move onto convergences.

Definition 19 (Convergence in Distribution/Weakly/In Law). For a sequence of real valued random variables, we say that $X_n \longrightarrow_d X$ if the CDFs pointwise converge at all continuity points $t \in \mathbb{R}$ of F_X . That is,

$$\lim_{n \to \infty} P(X_n \le t) = P(X \le t),$$

for all $t \in \mathbb{R}$.

Definition 20. Let $C_B(\mathbb{R})$ be the space of all continuous bounded real-valued functions on \mathbb{R} . For the measure space (R, \mathcal{B}) we say that μ_n is to converge weakly to μ if

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(t) d\mu_n = \int_{-\infty}^{\infty} f(t) d\mu,$$

for all $f \in C_B(\mathbb{R})$.

Definition 21. Convergence in Distribution Again Let (X_n) be a sequence of real-valued random variables with common domain being a measure space (Ω, A, P) . We say $X_n \longrightarrow_d X$ if the induced measures

$$\mu_n \longrightarrow \mu$$

in measure. Here the induced measure of a random variable Y is $P \circ Y^{-1}$.

Theorem 32 (Portmanteau). Let (Ω, A, P) be a probability space with real-valued random variables (X_n) . The following are equivalent:

- $P(X_n \le x) \longrightarrow P(X \le x)$ for all continuity points of $P(X \le x)$.
- $E[f(X_n)] \longrightarrow E[f(x)]$ for all $f: \mathbb{R} \longrightarrow \mathbb{R}$ bounded and continuous.
- $E[f(X_n)] \longrightarrow E[f(x)]$ for all $f: \mathbb{R} \longrightarrow \mathbb{R}$ bounded and unif. continuous.
- $\limsup_{n \to \infty} P(X_n \in C) \le P(X \in C)$ for all C closed.
- $\liminf_{n \to \infty} P(X_n \in O) \ge P(X \in O)$ for all O open.
- $\lim_{n \to \infty} P(X_n \in A) = P(X \in A)$ for all A contunuity sets, (i.e. sets B which satisfy $P(Y \in \partial B) = 0$. for a given r.v. Y)

Definition 22. Let (X_n) be a sequence of means able functions. We say that $X_n \longrightarrow_P X$ if for any $\varepsilon > 0$ one has $\lim_{n \longrightarrow \infty} P(|X_n - X| > \varepsilon) = 0$. If $P(\lim_{n \longrightarrow \infty} X_n \longrightarrow X) = 1$ then we say that $X_n \longrightarrow_{a.s.} X$, called almost sure convergence.

Lemma 33. Let X_n be i.i.d. with mean 0 and variance 1. Furthermore, let $S_n = \sum_{i=1}^n X_i$. Then $\operatorname{Var}(S_n) = n$ and $\operatorname{Var}(S_n/n) = 1/n$ and $P(|S_n/n| \ge \varepsilon) \le 1/(n\varepsilon^2) \longrightarrow_{n \longrightarrow \infty} 0$, so we have convergence to zero in probability.

Definition 23. For a probability space (Ω, A, P) let (A_i) be any sequence of sets. Define

$$\limsup_{i \to \infty} = \bigcap_{i=1}^{\infty} \bigcup_{j>1} A_j$$

and

$$\lim_{i \to \infty} \inf = \bigcup_{i=1}^{\infty} \bigcap_{j>1} A_j.$$

In probability we say that each A_i are events of $\omega \in \Omega$. Then the lim sup is the events of ω which happen infinitely often and lim inf is the set of events which happen eventually.

Lemma 34 (Borel Cantelli Lemma 1). Let (A_i) be a sequence of measurable sets with $\sum P(A_i) < \infty$. Then $P(\limsup_i A_i) = 0$.

Proof. By assumption $\lim_{i \to \infty} \sum_{j>i} P(A_j) = 0$. Then for any $k \in \mathbb{N}$ we have $P(\limsup_i A_i) = P(\bigcap_{i=1}^{\infty} \bigcup_{j>i} A_j) \leq P(\bigcup_{j>K} A_j) \leq \sum_{j>k} P(A_j) \longrightarrow 0$.

Lemma 35 (Borel Cantelli Lemma 2). Let (A_i) be a sequence of measurable sets be independent such that $\sum_{i=1}^{\infty} P(A_i) = \infty$. Then $P(\limsup_i A_i) = 1$.

Proof. Recall that $1-t \leq e^{-t}$ for all $t \in \mathbb{R}$ and that A_i are a sequence of independent sets implies that A_i^c is. Then for any $i \in \mathbb{N}$ and $k \geq i$ one has $P(\bigcap_{j=1}^k A_j^c) = \prod_{j=i}^k [1-P(A_j)] \leq \exp(-\sum_{j=1}^k P(A_j)) \longrightarrow 0$. Thus, $P(\bigcap_{j>i} A_j^c) = 0$ for any choice of i, so $P(\limsup_i A_i) = P(\bigcup_{i=1}^{\infty} \bigcap_{j>i} A_j) = 1 - P(\bigcap_{i=1}^{\infty} \bigcup_{j>i} A_j) = 1$.

Corollary 3. Let (X_n) be a sequence of random variables such that for all $\varepsilon > 0$ one has $\sum_{n=1}^{\infty} P(|X_n - X| \ge \varepsilon) < \infty$. Then $|X_n - X| \longrightarrow_{a.s.} 0$. That is, $X_n(\omega) \longrightarrow X(\omega)$ for almost all $\omega \in \Omega$.

Proof. For each $k \in \mathbb{N}$, $\sum_{n=1}^{\infty} P(|X_n - X| \ge 2^{-k}) < \infty$. Then BC1 says that for n sufficiently large one has $|X_n - X| \le 2^{-k}$ a.s., that is for all $\omega \notin N_k$ for some measure zero set N_k . The union of a countable amount of measure zero sets is again measure zero, so we have $|X_n - X|(\omega) \longrightarrow 0$ for all $\omega \in \bigcup_{k=1}^{\infty} N_k$, which is $|X_n - X| \longrightarrow_{a.s.} 0$

Corollary 4. Let (X_n) be a sequence of random variables since that $X_n \longrightarrow_P X$. Then there is a subsequence $n_k \longrightarrow \infty |X_{n_k} - X| \longrightarrow_{a.s.} 0$.

Proof. As $X_n \longrightarrow_P X$ we can choose n_k such that $P(|X_{n_k} - X| \ge 2^{-k}) < 2^{-k}$ and so $\sum P(|X_{n_k} - X| \ge 2^{-k}) < \infty$, so by the previous corollary we conclude that $|X_{n_k} - X| \longrightarrow_{a.s.} 0$.

Corollary 5. Let (X_n) be a sequence of random variables such that for some p > 0 $\sum E[|X_n - X|]^p < \infty$. Then $|X_n - X| \longrightarrow_{a.s.} 0$.

Definition 24. We say that a sequence of random variables $X_n \longrightarrow_{L^p} X$ (convergence in L^p) if $||X_n - X||_p \longrightarrow 0$. This is equivalent to $E||X_n - X||^p \longrightarrow 0$.

Convergence in L^p implies convergence in probability. Just consider Markov's inequality applied to the random variable $|X_n - X|^p$.

We now prove versions of the strong law of large numbers.

Theorem 36. If (X_n) are i.i.d. random variables from Ω to \mathbb{R} . Denote $S_n = X_1 + \ldots + X_n$. If $E[X_1] < \infty$ then $S_n/n \longrightarrow_{a.s.} E[X_1]$.

Proof. Lec 22.
$$\Box$$

Theorem 37 (Parseval's Formula).

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |\varphi_X(t)|^2 dt < \infty$$

iff

$$\int_{-\infty}^{\infty} f_X(t)^2 dt < \infty$$

and these integrals coincide.

Proof. Let X' be an i.i.d copy of X. Then $\varphi_{X-X'}(t) = \varphi_X(t)\varphi(-X')(t) = \varphi_X(t)\overline{\varphi}_X(t) = |\varphi_X(t)|^2$. Similarly,

$$f_{X-X'}(t) = \int_{-\infty}^{\infty} f_X(x) f_{-X}(t-x) dx \le \int_{-\infty}^{\infty} |F_X(t)|^2 dt < \infty.$$

But then,

$$f_{X-X'}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi_{X-X'}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\varphi_X(t)|^2 dt = \int_{-\infty}^{\infty} f_X(x) f_{-X}(-x) dx = \int_{\infty}^{\infty} f_X(x)^2 dx.$$

Now we discuss the Central Limit Theorem:

Theorem 38. Let (X_n) be a sequence of i.i.d. random variables from Ω to \mathbb{R} and denote $S_n = X_1 + \ldots + X_n$. If $E[X_1] = 0$ and $E[X_1^2] < \infty$ then $S_n / \sqrt{n} \longrightarrow_d Z \sim N(0, \sigma^2)$ where $\sigma^2 = \text{Var}(X_1)$.

Unlike SLLN, we now require a finite second momnet, otherwise our variance may be undefined. Before proving this we need some work:

Theorem 39 (Prokhorov's Theorem). For a sequence of probability measures (μ_i) if the sequence is uniformy tight then it is sequentially compact.

Uniformly tight means that for all $\varepsilon > 0$ there is a compact set K such that $\mu_i(K) > 1 - \varepsilon$ for all i. Sequentially compact means that for every subsequence of (μ_i) there is a weakly convergent subsubsequence.

Lemma 40. If (μ_i) and μ are probability measures such that (μ_i) is sequentially compact to μ , then $\mu_i \longrightarrow \mu$ weakly.

Proof. Suppose we do not have weak convergence for μ_i . Then there is a bounded continuous function f such that $\int f d\mu_i \not\longrightarrow \int f d\mu$. Then there is a subsequence i_k and $\varepsilon > 0$ such that

$$\left| \int f \, d\mu_{i_k} - \int f d\mu \right| > \varepsilon,$$

for all i_k . But this must have a convergent sub-subsequence, which is a contradiction. \Box

Lemma 41. Let X be a random variable and $\delta > 0$. Then

$$P(|X| > 2/\delta) \le \frac{1}{\delta} \int_{-\delta}^{\delta} [1 - \varphi_X(t)] dt.$$

Theorem 42 (Levy Continuity Theorem). Let (X_n) be a sequence of random variables with $\varphi_{X_n}(t) \longrightarrow \varphi(t)$ for all $t \in \mathbb{R}$, with φ continuous at t = 0. Then there exists a random variable X with $\varphi_X = \varphi$ and $X_n \longrightarrow_d X$.

Proof. As we have continuity of φ at 0, we see that for all $\varepsilon > 0$ there is $\delta > 0$ such that $|1 - \varphi(t)| < \varepsilon$ for all $|t| < \delta$. Then

$$\lim_{n \to \infty} \frac{1}{\delta} \int_{-\delta}^{\delta} [1 - \varphi_{X_n}(t)] dt = \frac{1}{\delta} \int_{-\delta}^{\delta} [1 - \varphi_X(t)] dt,$$

so for large enough n we have

$$\frac{1}{\delta} \int_{-\delta}^{\delta} [1 - \varphi_{X_n}(t)] dt < 3\varepsilon$$

and thus by the previous Lemma we see $P(|X_n| > 2/\delta) < \varepsilon$ so (X_n) is tight. Then by Prokhorov, there is a convergent subsequence $X_{n_k} \longrightarrow_d X$, which means that $\varphi_{X_{n_k}} \longrightarrow \varphi_X = \varphi$. For any such subsequence, we have a convergent subsubsequence, all of these must have char functions which converge to φ , so we conclude that they all converge in distribution to X, so by the previous lemma we see that $X_n \longrightarrow X$.

Proof of CLT. By independence, $E(n^{-1/2}S_n)^2 = EX_1^2$. For any $\varepsilon > 0$ there is $M_{\varepsilon} > 0$ such that $EX_1^2/M_{\varepsilon} < \varepsilon$. Hence, $P(\left|n^{-1/2}S_n\right| > M_{\varepsilon}) < \varepsilon$. This means that $(n^{-1/2}S_n)$ is tight. Let φ be the characteristic function of X_1 . Then $\varphi(0) = \varphi'(0) = 0$. Also, $\varphi''(0) = \sigma^2$, so by Taylor's theorem we have $\varphi(t) = 1 - \sigma^2 t^2/2 + o(t^2)$. Therefore

$$\varphi_{n^{-1/2S_n}}(t) = \varphi(n^{-1/2}t)^n = (1 - \sigma^2 t^2 / 2n + o(t^2/n))^n \longrightarrow e^{-\sigma^2 t^2 / 2}.$$

Thus we conclude that $n^{-1/2}S_n \longrightarrow_d Z \sim N(0, \sigma^2)$.

Theorem 43 (Hoeffding's Inequality). Let X_1, \ldots, X_n be independent such that there exists a_i, b_i such that $a_i \leq X_i \leq b_i$. Then

$$P(S_n - ES_n > t) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Proof. Let $X \in [a, b]$. Then for any $\lambda > 0$ we have

$$P(X - EX > t) \le e^{-\lambda t} E[\exp(\lambda(X - EX))].$$

WLOG, EX = 0. Then since $e^{\lambda X}$ is convex in λ we have

$$e^{\lambda X} \leq \frac{b-X}{b-a}e^{\lambda a} + \frac{X-a}{b-a}e^{\lambda b}$$

which implies

$$Ee^{\lambda X} \le \frac{be^{\lambda a} - ae^{\lambda b}}{b - a},$$

hence $Ee^{\lambda X} \leq e^{-\lambda^2(b-a)^2/8}$. Then we obtain

$$P(S_n - ES_n > t) \le \inf_{\lambda > 0} \exp\left(-\lambda t + (1/8)\lambda^2 \sum_{i=1}^n (b_i - a_i)^2\right)$$

which is optimized for $\lambda = 4t/(\sum_{i=1}^{n} (b_i - a_i)^2)$, see Lec 29.

Theorem 44 (Bernstein's). Let X_1, \ldots, X_n be independent such that there is c > 0 such that $|X_i| \le c$ for all i and $\sum_{i=1}^n EX_i^2 \le v$. Then

$$P(S_n - ES_n > t) \le \exp\left(\frac{-t^2}{2(v + ct)}\right)$$

Theorem 45 (Continuous Mapping Theorem). Let $g : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a function and let D_g be the set of discontinuities of g. Let $X, (X_k)$ be a sequence of random variables, vectors, matrices and assume that $P(X \in D_g) = 0$. Then

$$X_k \longrightarrow_d X \implies g(X_k) \longrightarrow_d g(X),$$

 $X_k \longrightarrow_P X \implies g(X_k) \longrightarrow_P g(X),$
 $X_k \longrightarrow_{a.s.} X \implies g(X_k) \longrightarrow_{a.s.} g(X),$

In the above theorem, we make the natural generalization of convergences by using a distance function and viewing \mathbb{R}^n as a metric space. Convergence in distribution is taken as a definition of the equivalencies by Portmanteau.

Theorem 46 (Slutsky's). Let $(X_k), (Y_k)$ be sequences of real, vector, matrix valued random variables and suppose that $X_k \longrightarrow_d X$ and $Y_k \longrightarrow_P c_0$ where X is a real, vector, matrix valued random variable and c_0 is either a real, vector, or matrix. Then

$$X_k + Y_k \longrightarrow_d X + c,$$

 $X_k \cdot Y_k \longrightarrow_d Xc,$
 $X_k/Y_k \longrightarrow_d X/c,$

where the last one makes sense iff c is invertible.

Now we move onto comparing modes of convergence. We have the following implications:

$$X_k \longrightarrow_{a.s \text{ or } L^p} X \implies X_k \longrightarrow_P X \implies X_k \longrightarrow_d X$$

$$X_k \longrightarrow_d c \in \mathbb{R} \implies X_k \longrightarrow_P c \in \mathbb{R} \text{ (here } c \text{ is a constant r.v.)}$$

$$X_k \longrightarrow_d X \not \Longrightarrow X_k \longrightarrow_P X \not \Longrightarrow X_k \longrightarrow_{a.s. \text{ or } L^p} X$$

First Statement. For almost sure convergence implies probability, if $X_k \longrightarrow_{a.s.} X$ then $P(\lim_{k \longrightarrow \infty} X_k = X) = 1$, so if we set $\varepsilon > 0$ then $|X_n - X| \le \sup_{k \ge n} |X_k - X|$, hence $(\sup_{k \ge n} |X_k - X| < \varepsilon) \subset (|X_n - X| < \varepsilon)$, so $P(\sup_{k \ge n} |X_k - X| < \varepsilon) \le P(|X_n - X| < \varepsilon) \le 1$. Taking limits implies

$$P(|X_n - X| < \varepsilon) = 1,$$

so
$$P(|X_n - X| \ge \varepsilon) = 0$$
.

For convergence in probability implies convergence in distribution, if $X_k \longrightarrow_P X$ then for all $\varepsilon > 0$ one has $P(|X_k - X| \ge \varepsilon) \longrightarrow 0$. Let f be any bounded and continuous function. Then $E[|f(X_k) - f(X)|] \longrightarrow 0$ by dominated convergence, so by Portmanteau we conclude $X_k \longrightarrow_d X$.

Third Statement. For convergence in distribution does not imply convergence in probability note that if $\Omega = \{0,1\}$ and $P(\omega = 1) = P(\omega = 2) = 1/2$ take $X_n(0) = 0 = X(1)$ and $X_n(1) = 1 = X(0)$ then $|X_n(\omega) - X(\omega)| = 1$ so we don't have convergence in probability, but $F_X(x) = F_{X_n}(x)$ which is 1/2 for x < 1 and 1 for $x \ge 1$.

Now for convergence in probability does not imply convergence in a.e., take [0,1] and cut it uniformly into two evenly spaced intervals [0,1/2] and [1/2,1]. Take f_1, f_2 to be the characteristic functions of these. Do the same thing for three intervals and so on, then $\{f_n\}$ is easily seen to converge to 0 in probability and in L^p , but it does not converge almost surely, because we can find subsequences of $\{f_n\}$ which will send our given input to 0 and to 1 because our point will lie inside and outside infinitely many intervals.

For convergence in probability does not imply convergence in L^p take (X_n) such that $P(X_n = 1) = 1/n$ and $P(X_n = 0) = 1 - 1/n$. Then $X_n \longrightarrow 0$ in probability, but we don't have convergence to zero in norm, and also since $\sum P(X_n = 1) = \infty$ and the events are independent we conclude that BCL says that $P(\limsup_n \{X_n = 1\}) = 1$.

Lemma 47. Convergence in probability implies the existence of a subsequence which converges a.e.

Proof. Take a sequence (n_k) which works for almost all ω . To see this, fix a subsquence (n_k) such that for each k one has $P(|X_{n_k} - X| > 2^{-k}) \leq 2^{-k}$. We construct this subsequence by induction and applying convergence of probability with $\varepsilon = 1/2^{-k}$. Then

Lemma 48. Suppose (X_k) , (Y_k) are sequences of random variables/vectors/matrices such that

$$X_k \longrightarrow_d X$$
.

If $\operatorname{dist}(X_k, Y_k) \longrightarrow_P 0$ then $Y_k \longrightarrow_d X$ as well.