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Chapter 1

Probability Theory

Throughout these notes we will fix a non-empty set Ω.

Definition 1 (σ-Algebra). Let A ⊂ P(Ω). A is called a σ-algebra if it contains
both ∅ and Ω, and is closed under complements and countable unions.

As a result of this definition, we immediately see that A is closed under
countable intersections as well, since

∞⋂
n=1

An = Ω \
∞⋃

n=1

(Ω \An) .

Moreover, if B,C ∈ A then C \B = C ∩ (Ω \B), so this shows that C \B ∈ A.

Definition 2 (Algebra). Let A ⊂ P(Ω). A is called an algebra if it contains
both ∅ and Ω, and is closed under set differences of two elements B,C of A.

It is easy to see that A is closed under finite unions and intersections. Indeed
if B,C ∈ A then B ∩ C = B \ (Ω \ C) and B ∪ C = Ω \ ((Ω \B) ∩ (Ω \ C)).

Definition 3 (Semi-Algebra). Let A ⊂ P(Ω). A is called a semi-algebra if it
contains both ∅ and Ω, is closed under intersections of two elements B,C of A,
and for any B,C ∈ A with B ⊂ C one can write C \ B as a union of finitely
many disjoint elements of A.

Note that every σ-algebra is an algebra, which is in turn a semi-algebra.
Now we discuss rings and semi-rings.

Definition 4 (Ring). Let A ⊂ P(Ω). A is called a ring if it contains ∅, and is
closed under set differences, intersections, and unions of two elements B,C of
A.

Definition 5 (Semi-Ring). Let A ⊂ P(Ω). A is called a semi-ring if it contains
∅, is closed under intersections of two elements B,C of A, and for any B,C ∈ A
with B ⊂ C one can write C \ B as a union of finitely many disjoint elements
of A.
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If we start with a semi-ring A on Ω then we can complete A to a ring A∗

by taking closure under finite unions. Indeed, ∅ ∈ A∗. Since we take closure
under finite unions it follows that we are then closed under set-differences. We
are automatically closed under unions too then. Closure under intersections is
also just passed along.

The same argument works for the completion of a semi-algebra to an algebra.

Lemma 1. Let C be a collection of σ-algebras in some set Ω. Then

X =
⋂
A∈C

A

is again a σ-algebra.

Proof. Clear.

This prompts the following definition.

Definition 6. Let F ∈ P(Ω) be a set. We define σ(F ) to be the smallest
σ-algebra that contains F .

σ(F ) =
⋂

{A : A sigma algebra on Ω and F ⊂ A.}

Definition 7. A measure µ on a σ-algebra A is a function from A to [0,∞].
so that µ(∅) = 0 and µ is countably additive (note that countable additivity
requires the sets to be disjoint).

Lemma 2. Let µ0 : A −→ [0,∞] be a countable additive set function such that
µ0(∅) = 0 on an algebra A. Then µ0 extends to a measure on σ(A), whose
restriction to A agrees with µ0.

Lemma 3. If µ is a measure on a σ-algebra A then for all B,C ∈ A with
B ⊂ C one has µ(B) ≤ µ(C).

Proof. Write C = B ∪ (C \B). Then µ(C) = µ(B) + µ(C \B) ≥ µ(B).

Now that we have these definition we can talk about measure spaces. A
measure space (Ω, A, µ) is a space with a non-empty set Ω, a σ−algebra A and
a measure µ. If µ(Ω) = 1 then we call (Ω, A, µ) a probability space.

Lemma 4. If µ is a measure on a σ-algebra A then for {An}∞n=1 ⊂ A one has

µ

( ∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An).

Proof. Write G1 = A1, G2 = A2 \ A1, G3 = A3 \ (A1 ∪ A2). Clearly the Gn

are disjoint and also each Gn are contained in A2, so apply countable additivity
and monotonicity.
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Example 1. The Borel σ−algebra on the real line R is the algebra generated by
clopen intervals of the form (a, b] with a ≤ b. (Also it is generated by intervals
of the form (−∞, t)) .

Lemma 5. Suppose (Ω, A, µ) is a measure space. If {Bn} is an increasing
sequence of sets from A then

lim
n−→∞

µ(Bn) = µ

( ∞⋃
n=1

Bn

)
Lemma 6. Suppose (Ω, A, µ) is a measure space. If {Bn} is an decreasing
sequence of sets from A with µ(Bk) < ∞ for some k. Then

lim
n−→∞

µ(Bn) = µ

( ∞⋂
n=1

Bn

)
Given Ω we define the outer-measure of a function m : B −→ [0,∞] by

m∗(A) = inf

{ ∞∑
n=1

m(Bn) : Bn ∈ B : A ⊂
∞⋃

n=1

Bn

}
.

Here B is just an arbitrary subset of P(Ω), and A is an arbitrary element of
P(Ω), these need not be associated with a σ-algebra. All we need is⋃

Bn∈B

Bn = Ω.

Definition 8. Let E ⊂ R. Then E is Lebesgue measurable iff there is a Borel
set A such that E ⊂ A and λ∗(A\E) = 0. In this case we will have λ(E) = λ(A).

This shows essentially that Lebesgue measurable sets are essentially Borel
measurable sets that differ on a set of measure zero.

The collection of all Lebesgue measurable sets, denoted by L(R) forms a
σ-algebra.

Definition 9. Let (X,A) and (Y,B) be two measure spaces. A function

f : X −→ Y

is measurable if f−1(S) ∈ A for all S ∈ B.

Note that every Lebesgue measurable function is Borel measurable, and to
check whether a function is Borel measurable is equivalent to checking preimages
of a generating set, since preimages play nicely under set operations.

Definition 10. Let (X,A, µ) be a measure space. A simple function f : X −→
R is a function for which we can find m disjoint measurable subsets A1, . . . , Am

and m real numbers c1, . . . , cm such that

f =

m∑
n=1

cnχAn
.
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We define the Lebesgue integral of a simple function f by∫
X

f(x) dµ =

m∑
n=1

cnµ(An).

Suppose now that f : X −→ R is a bounded µ a.e. function that is Borel
measurable and non-negative. We then define∫
X

f(x) dµ = sup

{∫
X

s(x) dµ : s : X −→ R : s =

N∑
n=1

inf{f(x) : x ∈ An}χAn

}
,

where we run over N ∈ N and each An lies within the domain for which f is
bounded. If f is not nessecarily bounded µ a.e. but Borel measurable and non-
negative then we define An = f−1([0, n]), for which fn = fχAn

will be Borel
measurable. We define ∫

X

f(x) dµ = lim
n−→∞

∫
X

fn(x) dµ.

Finally, for general Borel measurable functions f we define∫
X

f(x) dµ =

∫
X

f+(x) dµ−
∫
X

f−(x) dµ,

where f+ = fχP and f− = fχN , here P = f−1([0,∞)) and N = f−1((−∞, 0)).
Finally, we set ∫

X

|f | (x) dµ =

∫
X

f+(x) dµ+

∫
X

f−(x) dµ.

We say that f is integrable if ∫
X

f(x) dµ

is finite. Note that f is integrable iff∫
X

|f | (x) dµ < ∞.

Theorem 7 (Monotone Convergence Theorem). Let (X,A, µ) be a measure
space and {fn}∞n=1 be a sequence of Borel or Lebesgue measurable functions
such that the sequence is a non-negative sequence, also {fn(x)}∞n=1 is increasing
for µ almost every x ∈ X. Then

lim
n−→∞

∫
X

fn(x)dµ =

∫
X

( lim
n−→∞

fn)(x) dµ.
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Theorem 8 (Dominated Convergence Theorem I). Let (X,A, µ) be a measure
space and {fn}∞n=1 be a sequence of Borel or Lebesgue measurable functions such
that the sequence is a non-negative sequence, also limn−→∞ fn(x) exists for µ
almost every x ∈ X. Finally suppose for every n ∈ N and µ almost every x ∈ X
one has fn(x) ≤ (limn−→∞ fn)(x). Then

lim
n−→∞

∫
X

fn(x)dµ =

∫
X

( lim
n−→∞

fn)(x) dµ.

Theorem 9 (Dominated Convergence Theorem II (Negative Functions)). Let
(X,A, µ) be a measure space and {fn}∞n=1 be a sequence of Borel or Lebesgue
measurable functions such that limn−→∞ fn(x) exists for µ almost every x ∈ X.
Suppose also there is an integrable function g : X −→ [0,∞] such that for every
n and µ almost every x ∈ X:

|fn(x)| ≤ g(x).

Then

lim
n−→∞

∫
X

fn(x)dµ =

∫
X

( lim
n−→∞

fn)(x) dµ,

and both sides are always finite.

Lemma 10 (Fatou). Let (X,A, µ) be a measure space and {fn}∞n=1 a sequence
of non-negative functions. Then∫

X

(lim inf fn)(x) dµ ≤ lim inf

∫
X

fn(x) dµ.

Now we discuss CDF’s.

Theorem 11. Let F : R −→ R be a right continuous, non-decreasing, and
non-constant. There there exists a unique Borel measure denoted dF on R such
that dF (a, b]) = F (b)− F (a).

Definition 11. Let X : Ω −→ R be (Borel or Lebesgue) measurable. X is
called a random variable.

X induces a probability distribution, which is a measure µ : B(R) −→ [0,∞]
given by µ(A) = P (X−1(A)). Using this notation, X also induces a CDF
denoted FX : R −→ [0,∞], and defined by

FX(t) = P (X−1((−∞, t])) = P (X ≤ t).

Definition 12 (Independence For Sets). Let (Ω, A, P ) be a probability space.
We say that {An}n∈I (I countable) are independent if for all J ⊂ I finite one
has

P

⋂
j∈J

Aj

 =
∏
j∈J

P (Aj).
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Definition 13 (Independence For σ-Algebras). Let (Ω, A, P ) be a probability
space. We say that {Fn}n∈I (I countable) are independent σ-algebras if all
collections of the form {An : An ∈ Fn}∞n=1 are independent as sets.

Definition 14 (Independence of Random Variables). Let (Ω, A, P ) be a prob-
ability space. We say that {Xn}n∈I (I countable) are independent random
variables if {σ(Xn)}n∈I are independent as σ-algebras.

Definition 15. Let (X,A), (Y,B) be two measurable spaces. Then we can
define the (tensor) product σ-algebra by

A⊗B = σ({C ×D : C ∈ A and D ∈ B}).

Lemma 12. {C ×D : C ∈ A and D ∈ B} forms a semi-algebra on X × Y.

Then the function π(C×D) = µ(C)ν(D) where µ, ν are measures on X and
Y respectively induce a measure denoted µ ⊗ ν on X × Y by Caratheodory’s
extension theorem.

Theorem 13 (Tonelli’s Theorem). Let (X,A, µ), (Y,B, ν) be σ−finite measure
spaces and assume that f : X × Y −→ [0,∞] is an A⊗B measurable function.
Then for ν almost every y ∈ Y the function fy : X −→ [0,∞] defined by
fy(x) = f(x, y) is measurable and then F : Y −→ [0,∞] defined by

F (y) =

∫
X

fy(x) dµ,

is measurable, and∫
X×Y

f(x, y) d(µ⊗ ν) =

∫
Y

∫
X

fy(x) dµ dν.

The same statement holds respectively for the functions fx and then we obtain∫
X×Y

f(x, y) d(µ⊗ ν) =

∫
Y

∫
X

fy(x) dµ dν =

∫
X

∫
Y

fy(x) dν dµ.

We define for a random variable X its expectation, given by

E(X) =

∫
Ω

X(ω) dP.

Lemma 14. Let X : Ω −→ R be a non-negative random variable. Then

E(X) =

∫ ∞

0

P (X > t) dt.

Lemma 15. Let X : Ω −→ R be a non-negative random variable. Then

E(|X|r) =
∫ ∞

0

rtr−1P (|X| > t) dt,

for r ∈ (1,∞).
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Lemma 16. Let X : Ω −→ R be a non-negative random variable, and suppose
that E(X) < ∞. Then

lim
t−→∞

tP (X > t) = 0.

Theorem 17 (Markov’s Inequality). Let X : Ω −→ R be a non-negative random
variable and suppose that E(X) < ∞. Then for every t ≥ 0 we have

P (X > t) ≤ P (X ≥ t) ≤ 1

t
E(X).

This inequality is useful when t > E(X). Now recall the Lp norms, and the
L∞ norm ∥f∥∞ = esssup |f | = inf{M ≥ 0 : |f | ≤ M a.e.}.

Theorem 18. ∥fg∥1 ≤ ∥f∥p ∥g∥q where

1/p+ 1/q = 1

for all measurable functions f, g : X −→ R.

Corollary 1. Let X : Ω −→ R be a random variable. Then for all p, q ∈ (0,∞)
with p < q, one has that

E(|X|p)1/p ≤ E(|X|q)1/q.

Using the above, one concludes that E(X)2 ≤ E(X2), and if E(X2) < ∞
then Var(X) = E((X − E(X))2) is defined and finite. One also notes that
Var(X) = E(X2)− E(X)2.

Theorem 19 (Chebychev’s Inequality). Suppose that X : Ω −→ R is a random
variable and assume that E(X2) < ∞. Then

P
(
|X − E(X)| > r

√
Var(X)

)
≤ 1/r2

Theorem 20 (Jensen’s Inequality). Let φ : I −→ R be a convex function and
X be a random variable which takes on only values in I and is integrable (i.e.
E(|X|) < ∞). Then φ(X) is a random variable, E(X) ∈ I, and

φ(E(X)) ≤ E(φ(X)).

Note that we can apply linearity of expectation to apply an analogous state-
ment for concave functions, but the inequality will be reversed.

Theorem 21 (Paley-Zygmund Inequality). Let X ∈ R be a non-negative ran-
dom variable, and suppose that E(X2) < ∞. Then for all t ∈ [0, 1] we have
that

P (X ≥ tE(X)) ≥ P (X > tE(X)) ≥ (1− t)2
E(X)2

E(X2)
.
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Theorem 22. Let X and Y be independent random variables defined on the
same probability space Ω. Suppose that f, g : R −→ R are Borel-Borel measurable
functions. Then f(X) and g(Y ) are random variables. If g(X) and h(Y ) are
integrable, that is E(g(X)) and E(h(Y )) are defined and finite, then

E(g(X)h(Y )) = E(g(X))E(h(Y )).

Recall that two random variablesX and Y are independent iff their σ−algebras
are independent iff for every A ∈ σ(X) and B ∈ σ(Y ) one has

P (A ∩B) = P (A)P (B).

To see why f(X) is a random variable, note that for any Borel set A on R
one has (f(X))−1(A) = X−1(f−1(A)), but since f is Borel-Borel measurable
one has f−1(A) is a Borel set, and thus X−1(f−1(A)) is an element of σ(X)
which is a subset of our σ-algebra.

Definition 16. LetX and Y be two random variables that are integrable. That
is, E(X), E(Y ) exist and are finite. We define

cov(X,Y ) = E((X − E(X))(Y − E(Y ))),

assuming this expectation exists and is finite.

Corollary 2 (Corollary of Theorem 21). Let X and Y be independent random
variables and suppose that X and Y are both integrable. Then if cov(X,Y ) is
defined we must have cov(X,Y ) = 0.

Recall that the k−th moment for a real valued random variable x is

E(Xk) =

∫
Ω

Xk(ω) dP.

Definition 17. The moment generating function of a random variable X is
defined as

MX(t) = E(etX) =

∫ ∞

−∞
etx dFX(x).

Note for all random variablesX one hasMX(0) = 1.We say that the moment
generating function of X exists if there is a neighbourhood about 0 such that
MX is finite on this neighbourhood. Here are some properties of MGF:

Lemma 23. For two random variables X and Y one has MX(t) = MY (t) iff
X and Y have the same distribution.

Lemma 24. If X1, . . . , Xn are independent random variabl;es and c0, . . . , cn ∈
R then for Z = c0+

∑n
i=1 ciXi one has MZ(t) = ec0t

∏n
i=1 Mxi(cit). In particular

for X1, . . . Xn i.i.d and X = (1/n)
∑n

i=1 Xi one has MX(t) = MX(t/n)n.

Lemma 25. For a random variable X with MGF MX(t) and λ > 0 one has

P (X > t) ≤ e−λtMX(λ).
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Lemma 26. For a non-negative random variable X with MGF MX(t) AND
t > 0 one has

E[Xk] ≤ (
k

te
)kMX(t)

Definition 18. The characteristic function of a real-valued random variable X
with CDF FX is φX(t) = E[eitX ].

Lemma 27. If X1, . . . , Xn are independent random variables and c0, . . . , cn ∈ R
then for Z = c0 +

∑n
i=1 ciXi one has φZ(t) = eic0t

∏n
i=1 φXi(cit). In particular

if X1, . . . , Xn i.i.d and X = (1/n)
∑n

i=1 Xi one has φX(t) = φX(t/n)n.

Lemma 28. If E[Xk] < ∞ then φ
(k)
X (t) = ikE[Xk]eitX .

Lemma 29. For random variables X and Y one has FX = FY iff φX = φY .

Lemma 30 (Convergence of Distributions). For a sequence of random variables
(Xn) if φXn

−→ φX point-wise for some random variable X then FXn
−→ FX

point-wise.

Theorem 31 (Inversion). If φx is integrable w.r.t the Lebesgue measure then
the pdf fX exists and

fX(x) =
1

2π

∫ ∞

−∞
φ(t) exp(−ixt) dλ(t),

and

FX(x) =

∫ x

−∞

1

2π

∫ ∞

−∞
φ(t) exp(−iut) dλ(t) du.

If that is not the case, then nevertheless at all contunuity points x for FX(x)
one has

FX(x) = lim
σ2−→0

∫ x

−∞

1

2π

∫ ∞

−∞
φ(t) exp(−iut) exp(−σ2t2/2) dλ(t) du.

We now move onto convergences.

Definition 19 (Convergence in Distribution/Weakly/In Law). For a sequence
of real valued random variables, we say that Xn −→d X if the CDFs pointwise
converge at all continuity points t ∈ R of FX . That is,

lim
n−→∞

P (Xn ≤ t) = P (X ≤ t),

for all t ∈ R.

Definition 20. Let CB(R) be the space of all continuous bounded real-valued
functions on R. For the measure space (R,B) we say that µn is to converge
weakly to µ if

lim
n−→∞

∫ ∞

−∞
f(t) dµn =

∫ ∞

−∞
f(t)dµ,

for all f ∈ CB(R).
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Definition 21. Convergence in Distribution Again Let (Xn) be a sequence
of real-valued random variables with common domain being a measure space
(Ω, A, P ). We say Xn −→d X if the induced measures

µn −→ µ

in measure. Here the induced measure of a random variable Y is P ◦ Y −1.

Theorem 32 (Portmanteau). Let (Ω, A, P ) be a probability space with real-
valued random variables (Xn). The following are equivalent:

• P (Xn ≤ x) −→ P (X ≤ x) for all continuity points of P (X ≤ x).

• E[f(Xn)] −→ E[f(x)] for all f : R −→ R bounded and continuous.

• E[f(Xn)] −→ E[f(x)] for all f : R −→ R bounded and unif. continuous.

• lim supn−→∞ P (Xn ∈ C) ≤ P (X ∈ C) for all C closed.

• lim infn−→∞ P (Xn ∈ O) ≥ P (X ∈ O) for all O open.

• limn−→∞ P (Xn ∈ A) = P (X ∈ A) for all A contunuity sets, (i.e. sets B
which satisfy P (Y ∈ ∂B) = 0. for a given r.v. Y )

Definition 22. Let (Xn) be a sequence of meausrable functions. We say that
Xn −→P X if for any ε > 0 one has limn−→∞ P (|Xn −X| > ε) = 0. If
P (limn−→∞ Xn −→ X) = 1 then we say that Xn −→a.s. X, called almost
sure convergence.

Lemma 33. Let Xn be i.i.d. with mean 0 and variance 1. Furthermore, let
Sn =

∑n
i=1 Xi. Then Var(Sn) = n and Var(Sn/n) = 1/n and P (|Sn/n| ≥ ε) ≤

1/(nε2) −→n−→∞ 0, so we have convergence to zero in probability.

Definition 23. For a probability space (Ω, A, P ) let (Ai) be any sequence of
sets. Define

lim sup
i−→∞

=

∞⋂
i=1

⋃
j>1

Aj

and

lim inf
i−→∞

=

∞⋃
i=1

⋂
j>1

Aj .

In probability we say that each Ai are events of ω ∈ Ω. Then the lim sup is the
events of ω which happen infinitely often and lim inf is the set of events which
happen eventually.

Lemma 34 (Borel Cantelli Lemma 1). Let (Ai) be a sequence of measurable
sets with

∑
P (Ai) < ∞. Then P (lim supi Ai) = 0.

Proof. By assumption limi−→∞
∑

j>i P (Aj) = 0. Then for any k ∈ N we have

P (lim supi Ai) = P (
⋂∞

i=1

⋃
j>i Aj) ≤ P (

⋃
j>K Aj) ≤

∑
j>k P (Aj) −→ 0.
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Lemma 35 (Borel Cantelli Lemma 2). Let (Ai) be a sequence of measurable
sets be independent such that

∑∞
i=1 P (Ai) = ∞. Then P (lim supi Ai) = 1.

Proof. Recall that 1−t ≤ e−t for all t ∈ R and that Ai are a sequence of indepen-
dent sets implies that Ac

i is. Then for any i ∈ N and k ≥ i one has P (
⋂k

j=1 A
c
j) =∏k

j=i[1 − P (Aj)] ≤ exp(−
∑k

j=1 P (Aj)) −→ 0. Thus, P (
⋂

j>i A
c
j) = 0 for any

choice of i, so P (lim supi Ai) = P (
⋃∞

i=1

⋂
j>i Aj) = 1 − P (

⋂∞
i=1

⋃
j>i Aj) =

1.

Corollary 3. Let (Xn) be a sequence of random variables such that for all
ε > 0 one has

∑∞
n=1 P (|Xn −X| ≥ ε) < ∞. Then |Xn −X| −→a.s. 0. That is,

Xn(ω) −→ X(ω) for almost all ω ∈ Ω.

Proof. For each k ∈ N,
∑∞

n=1 P (|Xn −X| ≥ 2−k) < ∞. Then BC1 says that
for n sufficiently large one has |Xn −X| ≤ 2−k a.s., that is for all ω /∈ Nk for
some measure zero set Nk. The union of a countable amount of measure zero
sets is again measure zero, so we have |Xn −X| (ω) −→ 0 for all ω ∈

⋃∞
k=1 Nk,

which is |Xn −X| −→a.s. 0

Corollary 4. Let (Xn) be a sequence of random variables since that Xn −→P

X. Then there is a subsequence nk −→ ∞ |Xnk
−X| −→a.s. 0.

Proof. As Xn −→P X we can choose nk such that P (|Xnk
−X| ≥ 2−k) < 2−k

and so
∑

P (|Xnk
−X| ≥ 2−k) < ∞, so by the previous corollary we conclude

that |Xnk
−X| −→a.s. 0.

Corollary 5. Let (Xn) be a sequence of random variables such that for some
p > 0

∑
E[|Xn −X|]p < ∞. Then |Xn −X| −→a.s. 0.

Definition 24. We say that a sequence of random variables Xn −→Lp X
(convergence in Lp) if ∥Xn −X∥p −→ 0. This is equivalent to E |Xn −X|p −→
0.

Convergence in Lp implies convergence in probability. Just consider Markov’s
inequality applied to the random variable |Xn −X|p .

We now prove versions of the strong law of large numbers.

Theorem 36. If (Xn) are i.i.d. random variables from Ω to R. Denote Sn =
X1 + . . .+Xn. If E[X1] < ∞ then Sn/n −→a.s. E[X1].

Proof. Lec 22.

Theorem 37 (Parseval’s Formula).

1

2π

∫ ∞

−∞
|φX(t)|2 dt < ∞

iff ∫ ∞

−∞
fX(t)2 dt < ∞

and these integrals coincide.
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Proof. Let X ′ be an i.i.d copy of X. Then φX−X′(t) = φX(t)φ(−X ′)(t) =

φX(t)φX(t) = |φX(t)|2 . Similarly,

fX−X′(t) =

∫ ∞

−∞
fX(x)f−X(t− x) dx ≤

∫ ∞

−∞
|FX(t)|2 dt < ∞.

But then,

fX−X′(0) =
1

2π

∫ ∞

−∞
φX−X′(t) dt =

1

2π

∫ ∞

−∞
|φX(t)|2 dt =

∫ ∞

−∞
fX(x)f−X(−x) dx =

∫ ∞

∞
fX(x)2 dx.

Now we discuss the Central Limit Theorem:

Theorem 38. Let (Xn) be a sequence of i.i.d. random variables from Ω to R
and denote Sn = X1+. . .+Xn. If E[X1] = 0 and E[X2

1 ] < ∞ then Sn/
√
n −→d

Z ∼ N(0, σ2) where σ2 = Var(X1).

Unlike SLLN, we now require a finite second momnet, otherwise our variance
may be undefined. Before proving this we need some work:

Theorem 39 (Prokhorov’s Theorem). For a sequence of probability measures
(µi) if the sequence is uniformy tight then it is sequentially compact.

Uniformly tight means that for all ε > 0 there is a compact set K such that
µi(K) > 1− ε for all i. Sequentially compact means that for every subsequence
of (µi) there is a weakly convergent subsubsequence.

Lemma 40. If (µi) and µ are probability measures such that (µi) is sequentially
compact to µ, then µi −→ µ weakly.

Proof. Suppose we do not have weak convergence for µi. Then there is a
bounded continuous function f such that

∫
fdµi ̸−→

∫
fdµ. Then there is a

subsequence ik and ε > 0 such that∣∣∣∣∫ f dµik −
∫

fdµ

∣∣∣∣ > ε,

for all ik. But this must have a convergent sub-subsequence, which is a contra-
diction.

Lemma 41. Let X be a random variable and δ > 0. Then

P (|X| > 2/δ) ≤ 1

δ

∫ δ

−δ

[1− φX(t)] dt.

Theorem 42 (Levy Continuity Theorem). Let (Xn) be a sequence of random
variables with φXn(t) −→ φ(t) for all t ∈ R, with φ continuous at t = 0. Then
there exists a random variable X with φX = φ and Xn −→d X.
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Proof. As we have continuity of φ at 0, we see that for all ε > 0 there is δ > 0
such that |1− φ(t)| < ε for all |t| < δ. Then

lim
n−→∞

1

δ

∫ δ

−δ

[1− φXn
(t)] dt =

1

δ

∫ δ

−δ

[1− φX(t)] dt,

so for large enough n we have

1

δ

∫ δ

−δ

[1− φXn
(t)] dt < 3ε

and thus by the previous Lemma we see P (|Xn| > 2/δ) < ε so (Xn) is tight.
Then by Prokhorov, there is a convergent subsequence Xnk

−→d X, which
means that φXnk

−→ φX = φ. For any such subsequence, we have a convergent
subsubsequence, all of these must have char functions which converge to φ, so
we conclude that they all converge in distribution to X, so by the previous
lemma we see that Xn −→ X.

Proof of CLT. By independence, E(n−1/2Sn)
2 = EX2

1 . For any ε > 0 there
is Mε > 0 such that EX2

1/Mε < ε. Hence, P (
∣∣n−1/2Sn

∣∣ > Mε) < ε. This

means that (n−1/2Sn) is tight. Let φ be the characteristic function of X1.
Then φ(0) = φ′(0) = 0. Also, φ′′(0) = σ2, so by Taylor’s theorem we have
φ(t) = 1− σ2t2/2 + o(t2). Therefore

φn−1/2Sn (t) = φ(n−1/2t)n = (1− σ2t2/2n+ o(t2/n))n −→ e−σ2t2/2.

Thus we conclude that n−1/2Sn −→d Z ∼ N(0, σ2).

Theorem 43 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent such that
there exists ai, bi such that ai ≤ Xi ≤ bi. Then

P (Sn − ESn > t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
Proof. Let X ∈ [a, b]. Then for any λ > 0 we have

P (X − EX > t) ≤ e−λtE[exp(λ(X − EX))].

WLOG, EX = 0. Then since eλX is convex in λ we have

eλX ≤ b−X

b− a
eλa +

X − a

b− a
eλb

which implies

EeλX ≤ beλa − aeλb

b− a
,

hence EeλX ≤ e−λ2(b−a)2/8. Then we obtain

P (Sn − ESn > t) ≤ inf
λ>0

exp

(
−λt+ (1/8)λ2

n∑
i=1

(bi − ai)
2

)
which is optimized for λ = 4t/(

∑n
i=1(bi − ai)

2), see Lec 29.
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Theorem 44 (Bernstein’s). Let X1, . . . , Xn be independent such that there is
c > 0 such that |Xi| ≤ c for all i and

∑n
i=1 EX2

i ≤ v. Then

P (Sn − ESn > t) ≤ exp

(
−t2

2(v + ct)

)
Theorem 45 (Continuous Mapping Theorem). Let g : Rn −→ Rm be a function
and let Dg be the set of discontinuities of g. Let X, (Xk) be a sequence of random
variables, vectors, matrices and assume that P (X ∈ Dg) = 0. Then

Xk −→d X =⇒ g(Xk) −→d g(X),

Xk −→P X =⇒ g(Xk) −→P g(X),

Xk −→a.s. X =⇒ g(Xk) −→a.s. g(X),

In the above theorem, we make the natural generalization of convergences
by using a distance function and viewing Rn as a metric space. Convergence in
distribution is taken as a definition of the equivalencies by Portmanteau.

Theorem 46 (Slutsky’s). Let (Xk), (Yk) be sequences of real, vector, matrix
valued random variables and suppose that Xk −→d X and Yk −→P c0 where X
is a real, vector, matrix valued random variable and c0 is either a real, vector,
or matrix. Then

Xk + Yk −→d X + c,

Xk · Yk −→d Xc,

Xk/Yk −→d X/c,

where the last one makes sense iff c is invertible.

Now we move onto comparing modes of convergence. We have the following
implications:

Xk −→a.s or Lp X =⇒ Xk −→P X =⇒ Xk −→d X

Xk −→d c ∈ R =⇒ Xk −→P c ∈ R (here c is a constant r.v.)

Xk −→d X ̸ =⇒ Xk −→P X ̸ =⇒ Xk −→a.s. or Lp X

First Statement. For almost sure convergence implies probability, if Xk −→a.s.

X then P (limk−→∞ Xk = X) = 1, so if we set ε > 0 then |Xn −X| ≤
supk≥n |Xk −X|, hence (supk≥n |Xk −X| < ε) ⊂ (|Xn −X| < ε), so P (supk≥n |Xk −X| <
ε) ≤ P (|Xn −X| < ε) ≤ 1. Taking limits implies

P (|Xn −X| < ε) = 1,

so P (|Xn −X| ≥ ε) = 0.

For convergence in probability implies convergence in distribution, ifXk −→P

X then for all ε > 0 one has P (|Xk −X| ≥ ε) −→ 0. Let f be any bounded and
continuous function. Then E[|f(Xk)− f(X)|] −→ 0 by dominated convergence,
so by Portmanteau we conclude Xk −→d X.
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Third Statement. For convergence in distribution does not imply convergence
in probability note that if Ω = {0, 1} and P (ω = 1) = P (ω = 2) = 1/2 take
Xn(0) = 0 = X(1) and Xn(1) = 1 = X(0) then |Xn(ω)−X(ω)| = 1 so we don’t
have convergence in probability, but FX(x) = FXn

(x) which is 1/2 for x < 1
and 1 for x ≥ 1.

Now for convergence in probability does not imply convergence in a.e., take
[0, 1] and cut it uniformly into two evenly spaced intervals [0, 1/2] and [1/2, 1].
Take f1, f2 to be the characteristic functions of these. Do the same thing for
three intervals and so on, then {fn} is easily seen to converge to 0 in probability
and in Lp, but it does not converge almost surely, because we can find subse-
quences of {fn} which will send our given input to 0 and to 1 because our point
will lie inside and outside infinitely many intervals.

For convergence in probability does not imply convergence in Lp take (Xn)
such that P (Xn = 1) = 1/n and P (Xn = 0) = 1 − 1/n. Then Xn −→ 0
in probability, but we don’t have convergence to zero in norm, and also since∑

P (Xn = 1) = ∞ and the events are independent we conclude that BCL says
that P (lim supn{Xn = 1}) = 1.

Lemma 47. Convergence in probability implies the existence of a subsequnece
which converges a.e.

Proof. Take a sequence (nk) which works for almost all ω. To see this, fix a
subsquence (nk) such that for each k one has P (|Xnk

−X| > 2−k) ≤ 2−k. We
construct this subsequence by inductioon and applying convergence of proba-
bility with ε = 1/2−k. Then

Lemma 48. Suppose (Xk), (Yk) are sequences of random variables/vectors/matrices
such that

Xk −→d X.

If dist(Xk, Yk) −→P 0 then Yk −→d X as well.
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