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0.1 Topology

0.1.1 Introduction

A topological space is a set X equipped with a topology τ ⊂ 2X such that
∅, X ∈ τ, and τ is closed under arbitrary unions and finite intersections. For
any set X we can consider the trivial topology τ = {∅, X} and the discrete
topology τ = 2X . Elements of τ are called open sets, while elements whose com-
plement is in τ are called closed sets. Given two topologies τ1, τ2 on a set X we
say that τ1 is weaker than τ2 if τ1 ⊂ τ2. τ2 is said to be stronger than τ1. As a
remark, it is easy to find examples of topologies which are not comparable.

If X is a metric space, then X induces a topology τ where a set U ⊂ X
is open if for all x ∈ X, there is an open ball Bε(x) for some ε > 0 such
that x ∈ Bε(x) ⊂ U. The set of open balls in X has the property that for
any two two non-disjoint open balls Bε(x), Bδ(y), for ε, δ > 0 and x, y ∈ X,
for all z ∈ Bε(x) ∩ Bδ(y) there is an open ball Bθ(z) for θ > 0 such that
z ∈ Bθ(z) ⊂ Bε(x) ∩Bδ(y). We call this the metric topology of X.

With this in mind, we say that a set B ⊂ 2X is a basis if B covers X and
for any two non-disjoint A1, A2 ∈ B and x ∈ A1 ∩A2 there is A3 ∈ B such that
x ∈ A3 ⊂ A1 ∩ A2. Every basis B gives rise to a topology τ where U ⊂ X is
open if for all x ∈ U there is A ∈ B such that x ∈ A ⊂ U. Every topology τ
has a basis, namely itself and every basis B can be completed to a topology by
closing B under arbitrary unions.

Lemma 1. Let B be a basis for X. Then the topology τ induced by B is equal
to the closure of B under arbitrary unions.

Proof. If we have a collection of elements in B then they are open in τ and
so their union is open. Coversely if we are given an open set U in τ then
U =

⋃
x∈U Vx for elements Vx ∈ B and so we see the reverse inclusion.

Interestingly as well, if X is a topological space and B is a collection of open
sets such that for all open sets U and x ∈ U there is A ∈ B such that x ∈ A ⊂ U
then B is a basis. This is not too hard to prove.

Lemma 2. Let τ1, τ2 be two topologies on X with corresponding basis B1, B2.
The following are equivalent:

1. τ1 is weaker than τ2

2. for each A1 ∈ B1 and x ∈ A1 there is A2 ∈ B2 such that x ∈ A2 ⊂ A1.

Proof. If τ1 is weaker than τ2 then let A1 ∈ B1 and x ∈ A1. Then A1 ∈ τ1 ⊂ τ2
so there exists A2 ∈ τ2 such that x ∈ A2 ⊂ A1.

On the other hand, let U ∈ τ1. Then for each x ∈ U there is A1 ∈ B1 such
that x ∈ A1 ⊂ U. Then by assumption there is A2 ∈ B2 such that x ∈ A2 ⊂ U .
Since x is arbitrary, U ∈ τ2.
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A sub-basis B for a topology is a cover for X. Every sub-base induces a
basis by closing B under finite intersections, and thus in term yields a topology
in the sense for a basis. Now that we understand this, we can make sense of
two topologies which are not comparible.

Lemma 3. Let R,Rl,Ru be the set of real numbers equipped with the standard,
lower, and upper topologies. Then Rl and Ru are not comparible but both are
strictly stronger than R.

Proof. Easy.

0.1.2 Subspace, Product, Order Topologies

Given an arbitrary set of topological spaces {Xα} we define the product topology
on ∏

Xα

where open sets are of the form ∏
Uα

where Uα = Xα except for finitely many α. One can check that

B = {
∏

Uα : Uα = Xα except for finitely many α}

is a basis for
∏

Xα. We define the projection map canonically by

πβ :
∏

Xα −→ Xβ .

One sees that π−1
β (U). The set of all inverse images of Uβ under πβ as we run

through β forms a sub-base of the product topology. If we consider the box
topology on the product space (i.e. where the topology is formed by products of
all open sets then clearly the product topology is weaker than the box topology,
but also the box topology is strictly stronger in some cases since in RN we have
the open set

0 ∈ (1, 1)× (1, 1)× (1, 1)× . . .

and there is no neighbourhood of the product topology contained in this open
set.

The subspace topology is of a topological space X is defined using a set A
by considering the restriction of the topology of sets to A. For example, [0, 1]
inherits a subspace topology from the natural topology on R where (0, 1] is
open. A set U ∩A is open in the subspace topology if U is open in the regular
topology. On the converse, the singleton {1} is closed in R and open in its
subspace topology. Given a basis, resp. subbasis, we can intersect with A to
obtain a basis for the subspace topology.

The order topology of a totally ordered set X is defined by considering a
sub-basis of rays of the form {x ∈ X : x > α} or {x ∈ X : x < α} for α ∈ X.
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0.1.3 Continuity

We say that a map of topological spaces f : X −→ Y is continuous if the
preimage of an open set in Y is open in X. For example, any map from a
discrete topological space to another is continuous. If τ1 ≤ τ2 are two topologies
then continuity with τ2 implies continuity with τ1 (in the domain, which means
in other words that continuity goes down).

The product topology is the weakest topology for which all projection maps
are continuous. If all projection maps are continuous then we clearly get open-
ness in the product topology and if we had another topology with this property
then for any open set Uα ⊂ Xα one has that π−1

α (Uα) is open. Consequently
members π−1

α (Uα) form a sub-basis but since this a sub-base of the product
topology they must agree.

0.1.4 Closed Sets

Lemma 4. A set A is closed in the subspace topology of Y means that A = Y ∩V
for some X closed V.

Proof. A is closed so Y \ A is open and thus Y \ A = Y ∩ U for some U open.
Then A = Y \ (Y \A) = Y \ (Y ∩U) = Y \U = Y ∩ (X \U). Then X \U = V
is the closed set we want.

The closure of A in X is the smallest closed set in X which contains A.
Alternatively it is the intersection of all closed spaces in X containing A. The
interior of A is the largest open set contained in A. We denote the closure by A
and interior by A◦. Alternatively we define the closure as the set of all closure
points of A, i.e. elements x ∈ X for which all neighbourhoods of x meet A. A
is closed iff A is equal to its closure.

0.1.5 Hausdorff Axiom

We say a topological space is Hausdorff if any two distinct points of X can be
seperated by neighbourhoods. Being a Hasudorff space means that all single-
tons are closed. Indeed, given x ∈ X if {x} is not closed then let y ∈ {x}. Then
by the Hausdorff axiom if x ̸= y we can seperate x by a neighbourhood of y,
contradicting the fact that its in the closure.

We say that a net xα converges to some x ∈ X if every neighbourhood of x
contains a tail of xα. We can think of the same with sequences. Given a function
f , we can say that f is continuous if it maps convergent nets to convergent nets,
or alternatively if the preimage of closed sets are closed, or if f(A) ⊂ f(A) for
all A, or if for all x ∈ X and V ∋ f(x) there is U ∋ x. such that f(U) ⊂ V.

A homoemorphism between two topological spaces X and Y is a map f :
X −→ Y which is continuous, bijective, and has continuous inverse.
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Lemma 5. If f : A −→ Y and g : B −→ Y are two continuous functions which
agree on A ∩B then f ∪ g is continuous.

As a corollary, f is continuous iff πα ◦f is continuous for all α in the product
topology.

0.1.6 Metrizability

The box topology is not metrizable. If it were metrizable then let A = {x : xi >
0}. Then 0 ∈ A but for any sequence in A we can find a neighbourhood of 0
that contains no tail of the sequence.

RN is metrizable under the product topology with metric

D(x, y) = sup
i

d(
min(xi − yi, 1)

)
.

This gives rise to a topology on RN called the uniform topology. One has

RN
prod ⊊ RN

unif ⊊ RN
box.

When one deals with metrizability, closures can be discussed in terms of
limits of sequences, but when there is no metrizability, one has to use nets.

0.1.7 Quotient Maps

A quotient map is a map ρ : X −→ Y which is surjective and continuous and
V ⊂ Y is open iff for every ρ−1(V ) is open.

Lemma 6. If ρ is a surjection from a topological space X to a set Y there exists
a unqiue topology on Y such that ρ is a quotient map.

Proof. Define τY = {V ⊂ Y : ρ−1(V ) is open}. Topology on Y .

Using this, we can say that if ρ : X −→ Y is a quotient map and g : X −→ Z
is a map. There is a map f : Y −→ Z (of sets) such that f◦ρ = g. f is continuous
iff g is and a quotient iff g is. As ana pplication if we have maps Z −→ X and
maps Z −→ Y then there is a map Z −→ X × Y whose projection agrees with
the original map. Then given a topological space X and an equivalence relation
∼ on X we can define the quotient space of X by X/ ∼ equipped with the
topology where U ⊂ X/ ∼ is open iff ρ−1(U) is open in X.

0.1.8 Connectedness

A topological space is connected if it isn’t the union of two disjoint non-empty
open sets. X is connected iff the only open and closed sets of X are trivial. If
X is connected and there is such a set which is non trivial then X = U ∪U c is a
disjoint union of two non-empty open sets. Moreover, if X is not connected then
X is the disjoint union of U ∪ V where U ∪ V are open disjoint and non-empty.
Then X \ U = V is closed, and non-empty, but also open.
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If f is continuous and U is connected, then f(U) is connected. Moreover,
homeomorphisms preserve connectedness. If X is disconnected, then any set
A ⊂ X which is connected must lie in a connected component, i.e. a maximal
connected set which contains A or alternatively the connected components are
equivalence classes modulo the relation x ∼ y if there exists a connected subset
of X which contains x and y. If {Aα} are a collection of connected sets whose
intersection is non-empty then their union is connected. In this sense we can
see that X × Y is connected provided both X and Y are. One can see that RN

is not connected in the box topology because the set of all bounded sequences
is open and the set of all unbounded sequences is open.

A topological space is path connected if for all x, y ∈ X there is a continuous
path [0, 1] −→ X between x and y. The topologists sine curve is an example of
a connected set which is not path connected. The closure of a connected set is
always connected.

0.1.9 Compactness

A space X is compact if every open cover has a finite subcover. Alternatively
every net has a convergent subnet. Closed subspaces of compact spaces are
compact.

Theorem 7. Suppose that X is Hausdorff and that Y ⊂ X is compact. Then
Y is closed.

Proof. For every y /∈ Y find neighbourhoods which seperate Y from y. By
compactness Y has a finite subcover and take interseections over y to find two
neighbourhoods which seperate y and Y .

Compactness is preserved under homeomorphisms. We have Heine-Borel,
and Extreme Value Theorem. Also any continuous function on a compact do-
main is uniformly continuous (between metric spaces).

Theorem 8. The product of an arbitrary amount of compact sets is compact
in the product topology.

X is compact iff for every closed collection {Aα} satisfying the finite inter-
section property we have that

⋂
Aα ̸= ∅. (The finite intersection property is

that all finite subsets of {Aα} don’t intersect emptily.

6



0.1.10 Countability

A topological space X is first countable if every x ∈ X has a countable base of
neighbourhoods (every neighbourhood contains one of these neighbourhoods).
A topological space is second countable if there is a countable basis. Second
countable implies first countable.

Why is this nice? Well if we have first countable then we can work with
sequences. RN with uniform topology is first countable (since it is metrizable)
but not second countable under the uniform topology since every discrete set
must be countable but the set of all sequences of zeros and ones is uncountable
but discrete. If X is second countable then every open cover has a countable
subcover.

Normal seperates closed sets. Regular seperates points and closed sets.
Hausdorff seperates points. (In normal and regular defn we assume that points
are closed). Every compact Hausdorff space is normal. Every metrizable space
is normal.

Lemma 9. X is regular iff for every x ∈ X and each U ∋ x there is V ∋ x
such that V ⊂ U. X is normal iff for every A ⊂ X closed and A ⊂ U there is
A ⊂ V such that V ⊂ U.

Lemma 10 (Urysohn’s Lemma). If X is normal and A,B ⊂ X are disjoint and
closed then there is f : X −→ [0, 1] continuous such that f(A) = 0, f(B) = 1.

this is just seperation.

Theorem 11 (Urysohns). Every second countable regular space is metrizable.

0.1.11 Baire Spaces

A space X is said to be Baire if every countable intersection of open dense set
is again dense. Alternatively every union of closed sets with empty interior has
empty interior.

Theorem 12. Every complete metric space is Baire. Every compact Hausdorff
space is Baire.

Theorem 13. Continuous and non-differentiable functions are dense in C[0, 1].

Proof. Let h > 0 and ∆f(x, h) = max{ f(x+h)−f(x)
h , f(x−h)−f(x)

−h } and ∆f =
infx∈[0,1] ∆f(x, h). ∆f is continuous in h. Let Un = {f ∈ C[0, 1] : ∆fn > n for
some h ≤ 1/n}. Then Un is open and desne. is open and dense. Now if
f ∈

⋂∞
n=1 Un then for any t ∈ [0, 1] and n there existst 0 < |hn| < 1 such

| f(t+hn)−f(t)
hn

| > n so we are done.
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0.2 Algebraic Topology

0.2.1 Fundemental Groups

In this section we let X and Y be topological spaces and I = [0, 1]. Denote by
C(X,Y ) the set of all continuous maps f : X −→ Y .

Definition 1. Let f, g ∈ C(X,Y ). We say f is homotopic to g (written f ∼ g)
if there exists a continuous map F : X × I −→ Y such that F (x, 0) = f(x) and
F (x, 1) = g(x).

In the above definition, F is called a homotopy between f and g. If f ∈
C(X,Y ) and f is homotopic to a constant map, then we say that f is nulhomo-
topic.

Definition 2. Let x1, x2 ∈ X and γ1, γ2 ∈ C(I,X) be continuous curves be-
tween x1 and x2. We say that γ1 is path-homotopic to γ2 (written γ1 ∼p γ2) if
there exists a continuous map F : I2 −→ X such that F (0, t) = x1, F (1, t) = x2,
F (x, 0) = γ1(x) and F (x, 1) = γ2(x).

Using this notation, we say that x1 is the initial point and x2 is the final
point.

Lemma 14. ∼ and ∼p are equivalence relations on continuous maps and curves.

Proof. Easy. Just draw a picture and figure out the exact mappings that give
you reflexivity, symmetry, and transitivity of ∼ (resp. ∼p).

Figure 1: Three path-homotopic curves between x1, x2 ∈ X.

When Y is convex then all maps X −→ Y are homotopic via. the canonical
straight-line homotopy.

Definition 3. Let x1, x2, x3 ∈ X and γ1 ∈ C(I,X) be a continuous curve from
x1 to x2, while γ2 ∈ C(I,X) is a continuous curve from x2 to x3. We define by
γ1 · γ2 the product of γ1 and γ2, a curve from x1 to x3 defined by

(γ1 · γ2)(t) =

{
γ1(2t) : t ∈ [0, 1/2],

γ2(2t− 1) : t ∈ [1/2, 1],
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Figure 2: The product of two curves.

Note that this product is well defined at t = 1/2 by the gluing lemma. See
below for an illustration of such a product. Given the product operation on
continuous curves, we can induce a natural product operation on equivalence
classes of curves modulo homotopy. Indeed, we can define [f ] · [g] = [f · g] for
[f ], [g] ∈ C(I,X)/ ∼p. Such an operation is well defined because if f ∼p f ′ and
g ∼p g′ then f · g ∼ f ′ · g′. This is just an application of once again drawing
a picture out and figuring out the proper homotopy between f · g and f ′ · g′.
See the below illustration. Note that the product has the following properties.

Figure 3: The product on equivalence classes of continuous curves modulo ho-
motopy is well-defined.

First, the product is associative. Furthermore, we have a left and right identity.
Finally, we have the inverses. We will dive into this below.

Lemma 15. The product is associative. Moreover there exists left and right
identities and inverses.

Proof. We remark that the product being associative means that

(f · g) · h ∼p f · (g · h),

for f, g, h ∈ C(I,X) being continuous curves from x1 to x2 and then x2 to x3

and then x3 to x4. We can write

((f · g) · h)(t) =


f(4t) : t ∈ [0, 1/4],

g(4t− 1) : t ∈ [1/4, 1/2],

h(2t− 1) : t ∈ [1/2, 1].
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Further we write

(f · (g · h))(t) =


f(2t) : t ∈ [0, 1/2],

g(4t− 2) : t ∈ [1/2, 3/4],

h(4t− 3) : t ∈ [3/4, 1].

One can verify easily that these maps are homotopic.

The left identity is given by [ex1 ] where ex1 : I −→ X is the constant curve
ex1

(t) = x1. The right identity is given similarly. The inverse of [f ] is given by
[f ] where f(t) = f(1− t).

Definition 4. Let x1 ∈ X. A continuous curve that begins and ends at x1 is
called a loop at x1. The set of all loops at x1 modulo homotopy (denoted by
π1(X,x1)) equipped with the product above is called the fundemental group at
x1.

Indeed, this set becomes a group under the above product. Every left/right
identity simply becomes an identity when considering loops at x1. Consider the
following illustration below. Let γ : [0, 1] −→ X be a path between x1, x2 ∈ X.

Figure 4: The fundemental group at x1.

Then γ induces a map γ∗ : π1(X,x1) −→ π1(X,x2) given by γ∗([f ]) = [γ][f ][γ].
Again it is easy to see that such a map is well defined because the product is
well defined. One verifies that this map defines a group isomorphism, and thus
this shows a further corollary:

Corollary 1. Suppose that X is path-connected. Then π1(X,x1) ∼= π1(X,x2)
for all x1, x2 ∈ X.

Note that just because all of these groups are isomorphic, the isomorphism
isn’t necessarily independent of the underlying continuous path. It is not too
hard to see that the isomorphism is independent of the path iff the fundemental
group is abelian.

Definition 5. If X is path-connected, we say that X is simply-connected if the
fundemental groups of X are trivial.
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One can think of a simply-connected topological space as a path-connected
space for which every loop can be continuously deformed to a single point.

Lemma 16. In a simply connected space X where x1, x2 ∈ X one has that any
two continuous paths from x1 to x2 are homotopic.

Proof. Let γ1, γ2 be two paths from x1 to x1. Then γ1 · γ2 is a loop at x1 and
thus [γ1 · γ2] = [ex1 ]. Multiply both sides by [γ2] to obtain [γ1] = [γ2].

Let f : X −→ Y be a continuous map of topological spaces. If we fix x1 ∈ X
and consider y1 = f(x1) then we have an induced map

f∗ : π1(X,x1) −→ π1(Y, y1)

defined by f∗([γ]) = [f ◦ γ]. This map is well defined for if γ1, γ2 are two loops
at x1 which are homotopic under a homotopy F then f ◦ γ1 and f ◦ γ2 are
homotopic loops at y1 with homotopy f ◦ F. This induced map is called the
pushforward of f at x1.

Lemma 17. Let f ∈ C(X,Y ) and g ∈ C(Y,Z) be continuous maps from a
topological space X to Y to Z. Then (g ◦ f)∗ = g∗ ◦ f∗ and further ι∗ = ι is the
identity homomorphism where ι : X −→ X is the identity map.

We have a simple corollary of the above Lemma:

Corollary 2. If X is homeomorphic to Y then π1(X,x1) is isomorphic to
π1(Y, y1) where x1 ∈ X, y1 = f(x1) and f : X −→ Y is the homeomorphism
between X and Y .

Proof. Just verify that f−1
∗ is the required inverse homomorphism to f∗.

0.2.2 Covering Spaces

In this section, we will be wanting to study how exactly we can compute fun-
demental groups of certain topological spaces. For a continuous surjective map
ρ : E −→ X where E and X are topological spaces, we say that a neighbour-
hood U of X is evenly covered in E if ρ−1(U) can be expressed as a disjoint
union of open sets ⋃

α∈A

Vα, Vα ⊂ E,

where ρ restricted to each Vα is a homeomorphism of U . This prompts the
following definition

Definition 6. A covering space of a topological space X is a topological space
E equipped with a continuous surjection ρ : E −→ X such that every x ∈ X
has a neighbourhood which is evenly covered in E.
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Figure 5: Covering spaces.

We call ρ a covering map of X from E. Geometrically, we may view a
covering space in the illustration below. As an example, consider the covering
space E = R for X = S1. The covering map is given by ρ : R −→ S1 defined
by ρ(θ) = (cos 2πθ, sin 2πθ). One can convince themselves that this is indeed
a covering map. If we have a covering map ρ : E −→ X then ρ is a local
homeomorphism, that is, for all e ∈ E there is a neighbourhood of e which is
homeomorphic to a subset of X under ρ. The restriction of a covering map may
not be a covering map, because for example

ρ : R −→ S1

is a covering map but its restriction to R≥0 is not. Fortunately we have the
following Lemma:

Lemma 18. Let ρ : E −→ X be a covering map. Let Y be a subspace of X.
Then ρ : ρ−1(Y ) −→ Y is a covering map.

Proof. By definition, this is a surjective continuous map. Further, if y ∈ Y then
y ∈ X and so there exists a neighbourhood U ∋ y of X such that ρ−1(U) =⋃

α∈A Vα for a disjoint union of open Vα. Then

ρ−1(U ∩ Y ) =
⋃
α∈A

Vα ∩ ρ−1(Y ),

where y ∈ U ∩ Y is a neighbourhood of y and Vα ∩ ρ−1(Y ) is a disjoint union
of open neighbourhoods in p−1(Y ). The homeomorphism between Vα ∩ ρ−1(Y )
and U ∩ Y is due to ρ.

Furthermore, if ρ1 : E1 −→ X1 and ρ2 : E2 −→ X2 are covering maps then
so is

ρ = d(ρ1, ρ2) : E1 × E2 −→ X1 ×X2.

As an example, if we consider the covering map

R× R>0 −→ S1 × R>0
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then we can compose this with the canonical homeomorphism from S1 × R>0

to R2 \ {0} by sending (x, r) −→ rx ∈ R2 \ {0}. This gives a covering map

R× R>0 −→ R2 \ {0}.

See the illustration below for a geometrical argument as to what this covering
space looks like. One can imagine in this image each point on the loop about

Figure 6: Covering R2 \ {0} by R× R>0.

the origin is connected to the pole in the center by strips of R>0.

Definition 7. Let Y be a topological space and ρ : E −→ Y be a continuous
map of topological spaces. If f : X −→ Y is a continuous map of topological
spaces then we say that f lifts to E if there is a continuous map of topological
spaces f : X −→ E such that f = ρ ◦ f.

Our goal is to show that in the case of covering spaces that paths can be
lifted, and so can path homotopies. For an example, if we consider the curve
f : [0, 1] −→ S1 given by

f(θ) = (cosπθ, sinπθ),

lifts to R via. f : [0, 1] −→ R through f(t) = t/2, where ρ is the canonical
covering of R on S1.

Theorem 19. Let ρ : E −→ X be a covering map. Let e ∈ E and x = ρ(e).
Any path f : [0, 1] −→ X beginning at x can be lifted uniquely to a path in E
beginning at e.
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Proof. Let U be a covering of X by open sets for which every U ∈ U is evenly
covered. Choose a subdivision of [0, 1], say [0, s1], [s1, s2], . . . , [sn−1, 1] such that
f([sk, sk+1]) ⊂ U for some U ∈ U . We define the lifting f step by step. First
define f(0) = e. If we suppose that f is defined on [0, sk] then we define f
on [sk, sk+1] as follows. Let U ∈ U be chosen so that f([sk, sk+1]) ⊂ U. Then
ρ−1(U) =

⋃
α∈A Vα for a disjoint union of open Vα. Then by disjointness f(sk)

lies in one of these sets, say V0 and thus we define f(s) for s ∈ [sk, sk+1] as
follows:

f(s) = ρ−1
|V0

(f(s)).

f is continuous because ρ−1
|V0

is a homeomorphism between V0 and U. The con-

tinuity of f follows by the pasting lemma and the fact that f = ρ ◦ f is clear.
The uniqueness follows by a similar argument. If we assume that g is another
lifting of f then g(0) = f(0) and thus if we assume that f(sk) = g(sk) then we
see since each Vα is disjoint and [sk, sk+1] is connected that g([sk, sk+1]) ⊂ V0.
The uniqueness routinely follows because ρ−1

V0
is a homeomorphism.

Figure 7: Path lifting.

Do note that although such a path can be lifted, the end point may not be
what we want. For example a lifting of a loop may not be a loop. Fortunately
we have the following result though

Lemma 20. Let F : I × I −→ X be a path homotopy of two curves with
F (0, 0) = x ∈ X. Let ρ : E −→ X be a covering map of X and e ∈ E such that
ρ(e) = x. Then F lifts to a path homotopy F such that F (0, 0) = e.

Proof.
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Theorem 21. Let f, g : [0, 1] −→ X be two continuous paths from x1 to x2

which are path homotopic where x1 = ρ(e) for some e ∈ E and E is a covering
space of X. Consider the liftings f and g. Then these start at e and end at the
same point, and further are path homotopic.

Proof.

This prompts the following definition. If ρ : E −→ X is a covering map and
x ∈ X we choose e ∈ E such that ρ(e) = x. Then the lifting correspondence
φ : π1(X,x) −→ ρ−1(x) defined by ρ([f ]) = f(1) is a well defined map. If E is
path-connected then φ is surjective. If E is simply-connected then φ is bijective.

Proof. If E is path connected Then given e1 ∈ ρ−1(x) there is a path f :
[0, 1] −→ E between e and e1. Then f = ρ ◦ f is a loop in X at x and
φ([f ]) = f(1) = e1.

If E is simply connected then let [f ], [g] ∈ π1(X,x) such that φ([f ]) = φ([g]).
Then this means that f(1) = g(1). Since E is simply connected, there is a path-
homotopy F between f and g. Then ρ ◦ F is a path homotopy between f and
g, so [f ] = [g].

Theorem 22. For all x ∈ S1

π1(S
1, x) ∼= Z.

Proof. Since S1 is path-connected we can work with x = ρ(0) where ρ : R −→ S1

is the canonical covering map. Then ρ−1(x) = Z and thus since R is simply
connected we see that the lifting correspondence

π1(S
1, x) −→ Z

is a bijection. Our goal is to simply now show that this is a homomorphism.

Given [f ], [g] ∈ π1(S
1, x) let f and g be their lifts beginning at 0. Our goal

is to show that f · g(1) = f(1) + g(1). To this extent, we need to compute f · g.
Let g̃ = f(1) + g. Becuase ρ(f(1) + g) = ρ(g) = g it follows that g̃ is a lifting
of g beginning at f(1). Then f · g̃ is a path in R starting at 0 and further
ρ◦(f · g̃) = (ρ◦f) ·(ρ◦ g̃) = f ·g is a lifting of f ·g so this shows that f · g = f · g̃.
It is routine to verify (f · g̃)(1) = f(1) + g(1). Thus we have shown that this
map is a homomorphism.
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